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Security and Composition of Multi-party Cryptographic Protocols�Ran CanettiySeptember 9, 1999AbstractWe present general de�nitions of security for multi-party cryptographic protocols, with focuson the task of evaluating a probabilistic function of the parties' inputs. We show that, withrespect to these de�nitions, security is preserved under a natural composition operation.The de�nitions follow the general paradigmof known de�nitions; yet some substantial modi�-cations and simpli�cations are introduced. The composition operation is the natural `subroutinesubstitution' operation, formalized by Micali and Rogaway.We consider several standard settings for multi-party protocols, including the cases of eaves-dropping, Byzantine, non-adaptive and adaptive adversaries, as well as the information-theoreticand the computational models. In particular, in the computational model we provide the �rstde�nition of security of protocols that is shown to be preserved under composition.Keywords: multi-party cryptographic protocols, security of protocols, secure function evalua-tion, composition of protocols.
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1 IntroductionDesigning secure protocols is one of the central tasks of cryptography. Here security is generallyunderstood as guaranteeing, in the presence of adversarial behavior of some parts of the system,a set of correctness properties of the output values of the parties together with a set of secrecyrequirements regarding the local data of the parties.A general study of secure protocols started with the pioneering works of Yao and Goldreich,Micali, and Wigderson [y86, gmw87]. On top of introducing this fundamental notion, these workssuggest a general methodology for solving \any cryptographic protocol problem" in a secure way.They were followed by a large body of work that describe general constructions for solving proto-col problems in various settings (most notably, [bgw88, ccd88, rb89, gl90, oy91]), as well asprotocols for more speci�c tasks (e.g., [df89, gjkr96, r98]).In contrast to the great advances in constructing secure protocols, our understanding of thenotion of security of protocols progresses more slowly. The �rst works in this �eld (and in particular[y82, y86, gmw87]) contain only an intuitive exposition of this notion. Several general de�nitionsof security of protocols were subsequently formulated, most notably by Goldwasser and Levin[gl90], Micali and Rogaway [mr91], and Beaver [b91], where the work of Micali and Rogaway isconsiderably more comprehensive than others. More recently, a de�nition based on [gl90, mr91,b91] was presented in [c95]. (The de�nition of [c95] is closest in its approach to [b91].) While thegeneral approach of these de�nitions is roughly the same, the de�nitions di�er from each other inseveral substantial ways. See more details below.Indeed, while the notion of secure protocols seems intuitively obvious, capturing the securityrequirements of a \cryptographic protocol problem" in a way that is both precise and workable isnot an easy task. In particular, a large number of constructions of secure protocols that appearin the literature, including most of the constructions mentioned above, have never been rigorouslyproven secure. (An exception is the detailed exposition and analysis of [gmw87] that was recentlymade available in [g98].)This paper aims at improving our understanding of the nature of secure computation andour ability to prove cryptographic security of protocols. As a �rst step, we present de�nitions ofsecurity for protocols, with emphasis on simplicity and minimality. (Here minimality means thatthe de�nition is aimed at making minimal requirements from secure protocols, while not losing inrigor and in relevance to our intuitive notion of security.) We build on the formalization of [c95]that seems convenient and exible. In particular, the approach underlying that formalization hasbeen used in a number of quite varied settings, e.g. [bcg93, cfgn96, cg96, hm97, bck98, chh98,ckor98].Next, we consider composition of protocols. An important (almost obligatory) property of ade�nition of secure protocols is a guarantee that a protocol obtained by \properly" composingtogether secure protocols is secure. This is needed both for designing cryptographic protocols in amodular way, and for proving their security in a clear and understandable manner. In particular,such a property would greatly simplify the proofs of security of known constructions.We show that our de�nition of security provides this guarantee, in several standard settingsand with respect to a natural composition operation suggested in [mr91]. (Previously only thede�nition of [mr91] was known to preserve security under this composition operation, in some ofthese settings.) We hope that the results and techniques presented here will contribute to the writingof easy to follow proofs of security of known protocols, such as [gmw87, bgw88, cfgn96, bck98].As in [gl90, mr91, b91, c95], this work concentrates on the very general task of evaluating aprobabilistic function of the parties' inputs. (This task is often known as secure function evaluation.)3
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In addition, the de�nitional approach presented here can be readily applied to capturing the securityrequirements of a variety of other tasks.1.1 Previous de�nitional e�ortsA common paradigm underlying all e�orts to de�ne secure protocols is to guarantee that running asecure protocol is \just as good" as carrying out an idealized computational process where securityis guaranteed. In the context of secure function evaluation this ideal process consists of havingall parties hand their inputs to a trusted party, who locally evaluates the function and hands theappropriate portion of the function value to each party. The de�nitional e�orts di�er in the methodby which this basic paradigm is eshed out. Let us sketch the approaches of [gl90, mr91, b91].We elaborate on these de�nitions in Appendix A.The de�nition of Goldwasser and Levin [gl90] does not make explicit comparison with theideal process. Yet, this de�nition can be viewed as making a comparison with the ideal processas follows. They start with de�ning legal behavior of an adversary; this behavior captures theadversary's limited capabilities in the ideal process. Next they de�ne a notion of robustness ofprotocols that essentially means that any adversary can be `emulated' by a legal one. A protocolsecurely evaluates some function if it is robust and in addition it correctly evaluates the functionwhenever the adversary is limited to legal behavior.The comparison with the ideal process serves as strong motivation behind the formulation ofthe Micali and Rogaway de�nition [mr91]. Yet also here it is not explicitly used in the actualde�nition, which contains some additional technicalities. These technicalities make the de�nitionof [mr91] more restrictive. Micali and Rogaway also de�ne a general and natural compositionoperation of protocols and state that their de�nition is preserved under this composition operation.The composition operation discussed in this work is essentially taken from there. It was previouslybelieved that the extra restrictiveness of their de�nition is necessary for proving that compositionpreserves security. Here we show that this is not the case. (They consider only protocols thatevaluate deterministic functions, in the secure channels setting. The secure channels setting isde�ned in the sequel.) Micali and Rogaway's manuscript is quite comprehensive and containsmany enlightening observations, discussions, and examples regarding secure multi-party protocols.We have bene�ted a lot from reading this work, as well as from attending [m96].Beaver makes the comparison of a protocol with the ideal process more explicit [b91]. Thatis, �rst a general notion of comparing security of protocols is formulated. Next, a protocol forevaluating a given function is considered secure if it is at least as secure as the ideal process forevaluating that function. This approach is very similar to the one taken here, with some technicaldi�erences that are explained in the sequel. In addition, it is stated that security according to thisde�nition is preserved under `sequential composition'. That is, if secure protocols are invoked oneafter the other, the inputs for each are the local outputs from the previous one, then the resultingprotocol securely evaluates the composed function, as long as all intermediate results are part ofthe output. As seen below, this composition operation is a special case of the one considered here.1.2 The de�nitional approach taken hereWe �rst formalize the `ideal process' mentioned above. This process is aimed at capturing thedesired functionality of the task at hand, and in particular rules out any unwanted behavior.For the task of secure function evaluation, the ideal process is formulated as follows. There is nocommunication among the parties; instead, all parties hand their inputs to an incorruptible \trustedparty", who locally computes the desired outputs and hands them back to the parties. Thus in4
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the ideal process the adversary, controlling a set of corrupted parties, is very limited: Essentially,it only learns and perhaps modi�es the inputs and outputs of the corrupted parties.Next, we say that a protocol securely performs the task at hand if executing the protocol (ina given model of distributed computation) amounts to `emulating' the ideal process for that task.Emulating the ideal process is interpreted as follows. First we formalize the \output of running aprotocol with a given adversary", in the given distributed model, as well as the \output of runningthe ideal process with a given adversary". This formalization is a key ingredient of the de�nition.Now, running the protocol emulates the ideal process if for any adversary attacking the protocolin the given distributed model, there exists an `ideal process adversary' that manages to induceessentially the same output distribution in the ideal process. This way, we are assured that theonly adversarial e�ects that can occur when running the protocol in the given distributed modelare those that are explicitly allowed in the ideal process.In a way, this approach is a generalization of the `simulation approach' used in [g93] (rephras-ing [gm84]) to de�ne security of encryption functions and in [gmr89] to de�ne Zero-Knowledgeprotocols. Yet, the formulation here is more complex, as it applies to the more complex domain ofmany parties.This approach can, of-course, be applied to a large variety of `adversary models'. We concentrateon several salient models, characterized via the following parameters. Throughout, the network isassumed to be synchronous, and the communication channels are ideally authenticated. Next, wemake the following distinctions.A �rst distinction is between passive and active adversaries. Passive adversaries (often called`eavesdropping' adversaries) only gather information and do not modify the behavior of the parties.Such adversaries often model attacks that take place only after the execution of the protocol hascompleted. Active adversaries (often called `Byzantine') cause the corrupted parties to executesome arbitrary, malicious code.Another distinction is between non-adaptive and adaptive adversaries. A non-adaptive (or`static') adversary controls an arbitrary but �xed set of corrupted parties. An adaptive (or `dy-namic') adversary chooses the identities of the parties to be corrupted during the computation,based on the information gathered so far. Non-adaptive adversaries allow for simpler formalizationand protocols. Yet, considering adaptive adversaries forces protocols to address security concernsthat are important in many real-world situations and not addressed in the non-adaptive formaliza-tion. (See more discussion at the preamble to Section 5.)Yet another distinction is between the computational setting where the adversary learns all thecommunication among the parties and is restricted to probabilistic polynomial time, and the securechannels setting where channels are absolutely secure and the adversary has unlimited computa-tional power. Obtaining protocols that are secure in the secure channels setting is often regardedas a `stepping stone' on the way to obtaining secure protocols in the (more realistic) computationalsetting.Other variations of these settings may of course be interesting. For instance, many works assumean authenticated broadcast channel, where it is guaranteed that any message that is received by oneparty is received by all parties. Also, the setting where the adversary is probabilistic polynomialtime and learns only messages sent to corrupted parties is often convenient for designing protocols(e.g., [f87, ch94, gjkr96, g98, r98]). The de�nitions can be easily adapted to these settings.In all the above models, we concentrate on the case of honest majority, where strictly less thanhalf of the parties are corrupted at any time. When half or more of the parties are corrupted thede�nition has to be weakened somewhat. (Essentially, now an active adversary cannot be preventedfrom interrupting the computation at any time. Yet, the general de�nitional approach will remain5
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largely unchanged.) See [y86, gmw87, bg89, gl90, g98] for de�nitions and protocols for the caseof dishonest majority.Di�erences from previous de�nitions. While being inspired by Micali and Rogaway [mr91],and following the approach of [b91, c95] quite closely, the formalization here di�ers in severalaspects. Let us highlight two points of di�erence from [b91, c95]. One is the (no longer necessary)requirement that the `ideal process adversary' operates via one-pass, black-box simulation of the`real-life' adversary. That is, the `ideal process adversary' was restricted to have only oracle accessto the `real-life' adversary. More importantly, it was required that the simulated adversary is runonly once and is not `rewound'. This requirement is quite restrictive; in particular, in the caseof computationally bounded adversaries it essentially prohibits the use of Zero-Knowledge proofswithin secure protocols. Removing this requirement seems essential for good treatment of thecomputational model. (The de�nition of [mr91] uses a similar notion of simulation as [b91, c95].In fact, it is a bit more restrictive.)Another modi�cation, relevant to the case of adaptive adversaries, is the treatment of the \in-formation ow" between a single protocol execution and the external environment. Good modelingof this \information ow" is essential for successful treatment of secure protocol composition. Inthe de�nition here this is modeled by introducing an additional algorithmic entity, representingthe external environment, to the model. This seems to better represent the e�ect of the externalenvironment on a single execution; in particular it allows us to deal with composition of protocolseven for the case of computationally bounded adversaries. See more details in Sections 2.1 and 5.1.3 Modular compositionWhen designing a protocol for some task, we want to be able to break the task into several partial(presumably simpler) sub-tasks, design secure protocols for these sub-tasks, and then use the al-ready designed protocols as subroutines in the solution for the given task. In other words, we wantto support the following design methodology for secure protocols:(1) Design a `high-level' protocol for the given task assuming that other, simpler sub-tasks can becarried out securely.(2) Design protocols that securely carry out these simpler sub-tasks.(3) Construct a full-edged protocol for the given task by plugging the simpler protocols as sub-routines in the `high-level' protocol.We call this technique of combining protocols modular composition. (Modular composition was �rstformalized in this context by Micali and Rogaway [mr91]. There it is called reducibility of proto-cols). We want the security of protocols to be preserved under modular composition. That is, thesecurity of the full-edged protocol should follow from the security of the high-level design and thesecurity of the subroutine protocols for their speci�ed sub-tasks. In other words, we would like tohave:General Goal: Suppose that protocols �1:::�m securely evaluate functions f1:::fm respectively, andthat a protocol � securely evaluates a function g while using subroutine calls for ideal evaluation off1:::fm. Then the protocol ��1:::�m, derived from protocol � by replacing every subroutine call forideal evaluation of fi with an invocation of protocol �i, securely evaluates g.Several other composition operations on protocols are considered in the literature. For instance,`sequential composition' usually means simply running several (secure) protocols one after theother, and `parallel composition' means running them in parallel at the same time. We note that6
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these composition operations can be regarded as special cases of modular composition with theappropriate \high level" protocol. Consequently we consider modular composition as the maingeneral tool for modular protocol design.We achieve this goal with respect to the de�nitions in this paper, in the non-concurrent casewhere only a single subroutine invocation is in execution at any given time. We consider thesettings described above (i.e., non-adaptive, adaptive, passive, active adversaries in the securechannels and computational settings). In particular, in the computational setting this is the �rsttime a composition theorem is stated with respect to any de�nition. (In fact, we demonstrate aslightly more general result: Any protocol � that uses ideal evaluation calls to f1:::fm maintains its\functionality" when the ideal evaluation calls are replaced by invocations of �1:::�m, respectively.)1.4 Other related workGoldreich [g98] presents a detailed exposition and proof of the general construction of [gmw87],for both the two-party and the multi-party cases. He treats the computational setting, but onlywith non-adaptive adversaries. The de�nitions used there are essentially the same as the ones herefor the non-adaptive case. Also, that work does not present general purpose composition theorems,but rather composes the constructed protocols in an ad-hoc manner.A notion of security for the case of deterministic functions, non-adaptive, passive adversariesin the secure channels setting is studied by Chor and Kushilevitz [ck89, k89]. (This notion ofsecurity is somewhat weaker than the one here, as argued in Remark 1, Section 4.2.) Reducibilityof protocols w.r.t. the notion of security of [ck89, k89] is discussed in [kkmo97]. The notion ofreducibility of [kkmo97] is di�erent than the one here in that there no communication is allowedin the high-level protocol except for invocations of the speci�ed subroutines.Finally, our proofs of the composition theorem in the various settings follow and adopt thegeneral structure of the sequential composition theorems for Zero-Knowledge as proven by Goldreichand Oren [go94], adapting their techniques to our setting.Organization. In Section 2 we motivate and informally present the general approach taken byour de�nitions. Section 3 reviews some basic notions used to formalize the de�nitions. Section 4concentrates on the case of non-adaptive adversaries in the secure channels setting. This includes ade�nition of security, statement of the composition theorem, and a full proof.Section 5 generalizes the treatment of Section 4 to the case of adaptive adversaries (still in thesecure channels setting). An attempt is made to keep this section as self-contained as possible, atthe expense of some repetition.Section 6 deals with adaptive adversaries in the computational setting. Since the treatment isvery similar to that of Section 5, this section is not self-contained, and should be read in conjunctionwith Section 5. The case of non-adaptive adversaries in the computational setting can be inferredquite easily.Throughout Section 4-6, we develop the cases of passive and active adversaries `side by side'(with emphasis on the more involved case of active adversaries). Although constructions for the twocases are quite di�erent in nature, the corresponding de�nitions are similar and are best consideredtogether.In Appendix A we briey discuss the de�nitional e�orts of [mr91, gl90, b91, c95, cfgn96].We remark that the text contains a number of long footnotes. These are used to discuss issuesthat are not vital to the main thrust of the paper and would make the main text less uent. Inparticular, the footnotes can be skipped at �rst reading.7
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2 De�ning secure protocols: The general paradigmThis section motivates and sketches the general de�nitional approach pursued in this work. Theapproach is common to the various adversary models (passive, active, non-adaptive, adaptive ad-versaries, in the secure-channels and computational settings). Also, while this paper concentrateson the task of secure function evaluation, the approach carries to other tasks as well. Section 2.1presents the approach for the task of secure function evaluation. This case captures much of theessence of the problem. Other tasks are briey mentioned in Section 2.2.2.1 Secure function evaluationSecure function evaluation is a general task where the parties are given inputs and should produceoutputs according to a given speci�cation, cast as a function of their inputs. (This function can beprobabilistic; that is, for each input it speci�es a distribution on the corresponding outputs.) Wefocus on the case where only a minority of the parties are corrupted. Still, the general approachpresented here can be used to capture the security requirements for the case of dishonest majority(and in particular the two-party case).First attempts. Two basic requirements come to mind when trying to capture the notion ofsecure function evaluation. The �rst is correctness: the \good" parties (i.e., the parties that arenot corrupted by the adversary), should output \a correct" value of the function evaluated at theinputs of all parties. This requirement is somewhat complicated by the fact that the function maybe probabilistic (thus the output should obey some prede�ned distribution), and more importantlyby the fact that if the adversary is active then the corrupted parties cannot, in general, be preventedfrom arbitrarily changing their inputs to the computation.The second requirement is secrecy, meaning that the adversary should not learn (from inter-acting with the parties) anything other than the (original) inputs of the corrupted parties, and the\correct" function values that the corrupted parties are to obtain. This requirement seems to callfor a de�nition based on some notion of \simulation" of the adversary's view (as in the case ofprobabilistic encryption or zero-knowledge [gm84, g93, gmr89]), but it is not clear at this pointin what setting the \simulator" should operate and what should be required of it.A naive approach towards de�ning security may proceed by separately requiring correctnessand secrecy. Yet, as observed in [mr91], this decomposition is problematic since the two require-ments are \intertwined": On the one hand, the secrecy requirement depends on our de�nition ofa \correct" function value. On the other hand, the correctness requirement must make sure thatthe input values that the corrupted parties \contribute" to the computation be chosen withoutknowledge of the inputs of the uncorrupted parties.Let us sketch a simple example that demonstrates this issue. Assume that two parties wishto compute the exclusive-or of their one-bit inputs, and use the following protocol: First party Asends its input to party B; then B announces the result. Intuitively, this protocol is insecure since acorrupted B can inuence the output of A by choosing the value it contributes to the computationbased on A's input. Yet, this protocol maintains secrecy (which holds vacuously for this problemsince each party can infer the input of the other party from its own input and the function value),and is certainly \correct" in the sense that the output �ts the input that B \contributes" to thecomputation.This example highlights the problems associated with active adversaries. Other, more subtleexamples for de�nitions that allow an active adversary to \illegally" inuence the outputs of the8



www.manaraa.com

uncorrupted parties are described in [mr91]. Additional problems arise when from dealing withprobabilistic functions. Interestingly, these problems arise even when the adversary is passive.Remark 2 in Section 4.2 contains an example that highlights these problems.One may be tempted to try to augment the \correctness" and \secrecy" requirements so as tohandle the problems exposed above. However, following this approach may be di�cult and error-prone (if at all possible). Consequently, our de�nition follows a di�erent approach, that blendstogether \correctness" and \secrecy" into a single security requirement. We �rst envision an \idealprocess" for secure multi-party function evaluation. This process captures all that we want from asecure computation (and in particular, the above requirements). Then we say that a computationis secure if it \emulates" the ideal process, in some well-de�ned manner.Our approach. The de�nition proceeds in three steps. First we formalize the `real-life' com-putation, in a straightforward way. Here the parties interact according to their protocol, in somespeci�c model of distributed computation (e.g., either synchronous or asynchronous), and in thepresence of a real-life adversary that controls a set of corrupted parties and behaves according tosome adversarial model (e.g., either passive or active, non-adaptive or adaptive, etc.). At the endof the computation the uncorrupted parties output whatever is speci�ed in their protocol. Thecorrupted parties output a special symbol specifying that they are corrupted. The adversary, con-trolling the corrupted parties, outputs some arbitrary value; This value may include output anyinformation gathered by the adversary during the computation.1Next the following ideal process for multi-party function evaluation is formulated, in order tocapture our requirements from a secure function evaluation. (The speci�cs of the ideal processcorrespond to the type of adversary in consideration, e.g. passive or active.) First an ideal-processadversary gets to control a set of corrupted parties (which is either �xed beforehand or chosenadaptively), and learns the inputs of the corrupted parties. If active adversaries are modeled, thenthe ideal-process adversary can also modify these inputs based on the information gathered so far.Next, all parties hand their (possibly modi�ed) inputs to an incorruptible trusted party. The trustedparty evaluates the given function at the given inputs and hands each party its designated output.The evaluated function can be probabilistic, in which case the trusted party tosses the necessarycoins and uses the outcome to determine the function value. Finally, the uncorrupted parties outputwhatever they receive from the trusted party, the corrupted parties output some special symbol,and the adversary outputs some arbitrary value. (Also here, the adversary's output may containany information gathered by the adversary in the ideal process. However, here this informationis very limited: it consists only of the adversary's random input, the identities of the corruptedparties, their inputs, and the values they received from the trusted party.)We say that a protocol � for evaluating a function is secure if it emulates the ideal evaluationprocess of the function, in the sense that any e�ect on the real-life computation achieved by areal-life adversary (from some class of real-life adversaries) can be also achieved in the ideal processby some ideal-process adversary (from the corresponding class of ideal-process adversaries). Thisrequirement is formulated as follows. We �rst de�ne, in both the ideal and real-life models, theglobal output of a computation on a given input. This is a random variable that consists of theconcatenation of the outputs of all the parties and the adversary. Next we require that for anyreal-life adversary A (from some class) attacking a secure protocol � there exists an ideal-processadversary S (from the corresponding class) such that, on any input, the global output of the real-life computation in the presence of A is distributed similarly to the global output of the ideal1In an equivalent and somewhat more natural formalization the corrupted parties output whatever is instructedby the adversary and the adversary has no output. The formalization here will be more convenient in the sequel.9
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process computation in the presence of S. (By de�ning similarity to be either \equal distribution"or \statistical closeness" or \computational indistinguishability" we obtain di�erent notions ofsecurity.)Requiring that the outputs of the corrupted parties be distributed similarly in the ideal processand in the real-life computation forces the ideal-process adversary to generate an output that \lookslike" the output of the real-life adversary, in spite of the fact that it only sees the informationavailable in the ideal process. This guarantees secrecy, in the sense that the information gatheredby the real-life adversary is computable even in the ideal process. Requiring that the output of theuncorrupted parties be similarly distributed in the ideal process and in the real-life computationguarantees correctness, in the sense that the real-life adversary cannot inuence the outputs of thecorrupted parties more than is possible in the ideal process. Furthermore, combining the outputsof the corrupted and the uncorrupted parties into a single random variable guarantees that the\intertwined" secrecy and correctness requirement, discussed above, is satis�ed. (See also Remark2, Section 4.2.)We remark that the above notion of a protocol in some adversary model emulating an idealprocess can be naturally extended to having the protocol emulate another protocol in some otheradversary model. This extended notion of emulation is quite useful. In particular, it plays a keyrole in our presentation of the composition theorems.Enabling secure composition. The de�nitional approach sketched above is aimed at capturingthe security requirements from a protocol, in a simpli�ed setting where a single protocol executionis considered in vitro. In order to guarantee security in a setting where several protocol executionsmay co-exist, and in particular in order to be closed under composition of protocols, a de�nition ofsecurity must guarantee the following property: Even adversaries that have already gathered someinformation on the current execution (say, via other protocol executions) will be unable to gatheradditional information on the current execution, or otherwise gain some unwanted advantage.In the case of non-adaptive adversaries this property is guaranteed by letting the adversaryhave some arbitrary auxiliary input at the onset of the interaction. The auxiliary input representsthe information gathered by the adversary during other protocol executions occurring before thecurrent execution. The notion of emulation, sketched above, is extended to hold for any auxiliaryinput. See more details in Section 4. (Auxiliary inputs were �rst introduced in [go94], in thecontext of sequential composition of Zero-Knowledge proofs. Further discussion appears there, aswell as in [g95].)In the case of adaptive adversaries the \information ow" between a single protocol executionand other executions cannot be fully captured by a piece of information given at the onset of theexecution. In a nutshell, the problem is that whenever a party gets corrupted by the adversary,either during the protocol execution or after the execution is completed, the adversary sees internaldata of this party both from that execution and from other protocol executions run by the party.We model this information ow by introducing an additional algorithmic entity, representing theexternal environment, both to the real-life and to the ideal models. This entity interacts withthe adversary and the parties at several points throughout the execution. At these points, theenvironment provides the adversary with additional information, and receives information from theadversary. The notion of emulation is adapted as follows: A protocol � emulates the ideal processfor evaluating f (namely, � securely evaluates f) if for any real-life adversary A (from some classof real-life adversaries), and for any environment Z, there exist an ideal-model adversary S (fromthe corresponding class of ideal-process adversaries) such that the e�ect of A with environmentZ on parties running � can be emulated by S in the ideal model for evaluating f with the same10
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environment Z. See more details in Section 5.2.2 Beyond secure function evaluationAlthough secure function evaluation is a very general task, it does not capture all the interestingfunctionalities of cryptographic protocols. Let us elaborate a bit. First, some cryptographic tasksare reactive, in the sense that they have several phases, where the output of one phase may bepart of the input of the next phase, and where the security of the task imposes requirementson the outputs of all phases taken together. (Examples include commitment, secret-sharing, andmore complex tasks such as encryption or signature schemes where the same key is used for theprocessing of many messages.) In addition, the requirement that a secure protocol evaluates a pre-de�ned function of the inputs may be too restrictive: Many cryptographic tasks can be securelycarried out by protocols that do not evaluate any pre-de�ned function of the inputs. (Such protocolswould still guarantee that some input-output relation is satis�ed.)Nonetheless, the de�nitional approach described in Section 2.1 can be adapted to capture thesecurity requirements of other tasks. In fact, some de�nitions used in the literature to capture thesecurity requirements of other tasks can be regarded as examples of such an adaptation. Examplesinclude the tasks of distributed proactive signature schemes [chh98], key-exchange and authentica-tion [bck98], and distributed public-key encryption [cg99]. This sub-section sketches the generalparadigm that underlies these de�nitions and can possibly be used to capture the security require-ments of other cryptographic tasks. The idea is to proceed in three steps, as follows:1. Formulate an ideal model for executing the task at hand. Typically, this ideal model in-volves a trusted party whose functionality captures the security requirements from the task.This functionality will typically involve repeated interaction with the parties. An importantingredient in this step is de�ning the global output of an execution in the ideal model.2. Formalize the global output of an execution of a protocol in the \real-life" model underconsideration.3. Say that a protocol � securely performs the task at hand if it \emulates" an execution inthe ideal model, in the usual way: For any real-life adversary A there should exist an ideal-model adversary S such that the global output of running � with A in the real-life modelis distributed similarly to the global output of running S in the ideal model. In the case ofadaptive adversaries the notion of emulation is extended to include the environment machine,as sketched above.3 PreliminariesIn this section we review some basic notions that underlie our formalization of the de�nitions. Adistribution ensemble X = fX(k; a)gk2N;a2D is an in�nite sequence of probability distributions,where a distribution X(k; a) is associated with each values of k 2 N and a 2 D for some domainD. (Typically, D = f0; 1g�.)The distribution ensembles we consider in the sequel are outputs of computations (either inan ideal or in a `real-life' model), where the parameter a corresponds to various types of inputs,and the parameter k is taken to be the security parameter. All complexity characteristics of ourconstructs are measured in terms of the security parameter. In particular, we will be interested inthe behavior of our constructs when the security parameter tends to in�nity.11
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De�nition 1 (Equal distribution) We say that two distribution ensembles X and Y are equallydistributed (and write X d= Y ) if for all k and all a we have that distributions X(k; a) and Y (k; a)are identical.Slightly abusing notations, we will also use X(k; a) d= Y (k; a) to denote that distributions X(k; a)and Y (k; a) are identical.Say that a function � :N! [0; 1] is negligible if for all c > 0 and for all large enough k 2N wehave �(k) < k�c.De�nition 2 (Statistical indistinguishability) Let � : N! [0; 1]. Two distribution ensemblesX and Y have statistical distance � if for all su�ciently large k and all a we have thatSD(X(k; a); Y (k; a)) < �(k)where SD denotes statistical distance, or total variation distance (that is,SD(Z1; Z2) = 12Pa jProb(Z1 = a)� Prob(Z2 = a)j).If � is a negligible function then we say that X and Y are statistically indistinguishable (and writeX s� Y )De�nition 3 (Computational indistinguishability [gm84, y82a]) Let � : N ! [0; 1]. Wesay that two distribution ensembles X and Y have computational distance at most � if for everyalgorithm D that is probabilistic polynomial-time in its �rst input, for all su�ciently large k, all a,and all auxiliary information w 2 f0; 1g� we have:jProb(D(1k; a; w; x) = 1)� Prob(D(1k; a; w; y) = 1)j < �(k)Where x is chosen from distribution X(k; a), y is chosen from distribution Y (k; a), and the proba-bilities are taken over the choices of x, y, and the random choices of D.If ensembles X and Y have computational distance at most k�c for all c > 0 then we say thatX and Y are computationally indistinguishable and write X c� Y .Note that De�nition 3 gives the distinguisher D access to an arbitrary auxiliary informationstring w (thus making the de�nition a non-uniform complexity one). It is stressed that w is �xedbefore the random choices of X and Y are made.Multiparty functions. The functions to be evaluated by the parties are formalized as follows.An n-party function (for some n 2 N) is a probabilistic function f : N � (f0; 1g�)n � f0; 1g� !(f0; 1g�)n, where the �rst input is the security parameter and the last input is taken to be therandom input. We will be interested in functions that are computable in time that is polynomialin the security parameter. In particular, the lengths of the inputs and outputs are assumed tobe bounded by a polynomial in the security parameter. See [g98] for a more complete discussionof conventions regarding such functions. (Extending the treatment to more complex multipartyfunction requires some small technical modi�cations.)Intuitively, n-party functions are interpreted as follows. Let e R Dmean that element e is drawnuniformly at random from domain D, and let f(k; ~x; rf)i denote the ith component of f(k; ~x; rf).Each party Pi (out of P1; :::; Pn) has input xi 2 f0; 1g�, and wishes to evaluate f(k; ~x; rf)i whererf R f0; 1gt and t is a value determined by the security parameter. For concreteness we concentrateon inputs and random inputs in f0; 1g�. Other domains (either �nite or in�nite) can be encodedin f0; 1g� in standard ways. 12
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4 Non-adaptive adversariesAs discussed in the preamble of Section 5, non-adaptive security (i.e., security against non-adaptiveadversaries) is considerably weaker than adaptive security. Still, we �rst present the non-adaptivecase in full. This is done for two reasons. First, the de�nition and (especially) the proof of thecomposition theorem are considerably simpler in the non-adaptive case. Thus, it is a good `warm-up' for the adaptive case. Second, some important protocols in the literature (e.g., [gmw87, f87])are known to be secure only against non-adaptive adversaries (see [g98]). Thus, treatment of thiscase is of independent interest.Throughout this section we restrict ourselves to the secure channels setting, where the adversarymay be computationally unbounded and learns only messages sent to corrupted parties. In Section6 we show how the treatment is adapted to settings where no secure channels exist, and security isprovided only against probabilistic polynomial time adversaries.Section 4.1 contains the de�nition of secure protocols. Further discussion on the de�nition ispresented in Section 4.2. Section 4.3 presents the composition theorem, to be proven in Section4.4.4.1 De�nition of security: The non-adaptive caseWe de�ne secure protocols in the non-adaptive case. The de�nitions for passive and active adver-saries are developed side by side, noting the di�erences throughout the presentation.Following the outline presented in Section 2, we �rst formalize the real-life model; next wedescribe the ideal process; �nally the notion of emulation of the ideal process by a computation inthe real-life model is presented.The real-life model. An n-party protocol � is a collection of n interactive, probabilistic algo-rithms. Formally, each algorithm is an Interactive Turing machine, as de�ned in [gmr89]. We usethe term party Pi to refer to the ith algorithm. (Figuratively, party Pi is a computer that executesthe ith algorithm.) Each party Pi starts with input xi 2 f0; 1g�, random input ri 2 f0; 1g�, andthe security parameter k. Informally, we envision each two parties as connected via a private com-munication channel. A more complete description of the communication among parties is presentedbelow.2A (non-adaptive) real-life adversary, A, is another interactive (computationally unbounded) Tur-ing machine describing the behavior of the corrupted parties. Adversary A starts o� with inputthat contains the identities of the corrupted parties and their inputs. In addition, A receives ad-ditional, auxiliary input and a value k for the security parameter. We let z denote the input ofA. (The auxiliary input is a standard tool that allows us to prove the composition theorem. SeeSection 2.1 for discussion.) In addition, A has random input. 3Say that an adversary is t-limited if it controls at most t parties. (Formally, a t-limited adversaryhalts whenever its input contains the identities of more than t corrupted parties.)42We view n, the number of parties, as independent from the security parameter, k. This allows discussing caseswhere n is small with respect to the security parameter (e.g., a constant), as well as cases where n tends to in�nityand has some some �xed relation with k. Furthermore, note that the parties do not necessarily know n in advance.3We remark that the adversary, being computationally unbounded, need not be probabilistic. In fact, our formal-ization of the security requirement will be a non-uniform complexity one. In such a setting deterministic adversariesare as powerful as probabilistic adversaries with comparable complexity. Yet, we �nd it conceptually appealing toformulate the de�nition in terms of probabilistic adversaries.4This paper concentrates on t-limited adversaries, where t is some threshold value. That is, it is assumed that the13
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In the sequel we often use a slightly less formal language for describing the participating entitiesand the computation. A formal description (in terms of interactive Turing machines) can be easilyextracted from the one here.The computation proceeds in rounds, where each round proceeds as follows. (The descriptionbelow captures a fully connected, ideally authenticated, synchronous network with rushing. Theterm rushing refers to allowing the corrupted parties to learn the messages sent by the uncorruptedparties in each round, before sending their own messages for this round.) First the uncorruptedparties generate their messages of this round, as described in the protocol. (That is, these messagesappear on the outgoing communication tapes of the uncorrupted parties.) The messages addressedto the corrupted parties become known to the adversary (i.e., they appear on the adversary'sincoming communication tape). Next the adversary generates the messages to be sent by thecorrupted parties in this round. If the adversary is passive then these messages are determinedby the protocol. An active adversary determines the messages sent by the corrupted parties inan arbitrary way. Finally each uncorrupted party receives all the messages addressed to it in thisround (i.e., the messages addressed to Pi appear on Pi's incoming communication tape.)5At the end of the computation all parties locally generate their outputs. The uncorruptedparties output whatever is speci�ed in the protocol. The corrupted parties output a special sym-bol, ?, specifying that they are corrupted. (Figuratively, these parties did not participate in thecomputation at all.) In addition, the adversary outputs some arbitrary function of its view of thecomputation. The adversary view consists of its auxiliary input and random input, followed by thecorrupted parties' inputs, random inputs, and all the messages sent and received by the corruptedparties during the computation. Without loss of generality, we can imagine that the adversary'soutput consists of its entire view.Figure 1 summarizes the real-life computational process.We use the following notation. Let advr�;A(k; ~x; z; ~r) denote the output of real-life adversary Awith auxiliary input z and when interacting with parties running protocol � on input ~x = x1 : : : xnand random input ~r = r0 : : : rn and with security parameter k, as described above (r0 for A, xi andri for party Pi). Let exec�;A(k; ~x; z; ~r)i denote the output of party Pi from this execution. Recallthat if Pi is uncorrupted then this is the output speci�ed by the protocol; if Pi is corrupted thenexec�;A(k; ~x; z; ~r)i =?. Letexec�;A(k; ~x; z; ~r) = advr�;A(k; ~x; z; ~r); exec�;A(k; ~x; z; ~r)1; : : : ; exec�;A(k; ~x; z; ~r)n:Let exec�;A(k; ~x; z) denote the probability distribution of exec�;A(k; ~x; z; ~r) where ~r is uniformlychosen. Let exec�;A denote the distribution ensemble fexec�;A(k; ~x; z)gk2N;h~x;zi2f0;1g�. (Hereh~x; zi denotes some natural encoding of ~x; z as a single string.)The ideal process. The ideal process is parameterized by the function to be evaluated. This isan n-party function f : N� (f0; 1g�)n � f0; 1g� ! (f0; 1g�)n, as de�ned in Section 3. Each partyPi has input xi 2 f0; 1g� and the security parameter k; no random input is needed. Recall that theparties wish to evaluate f(k; ~x; rf)1; :::; f(k; ~x; rf)n, where rf R f0; 1gs and s is a value determinedby the security parameter, and Pi learns f(k; ~x; rf)i. A (non-adaptive) ideal-process-adversary S is anadversary can corrupt any subset of up to t parties. This type of corruption structures was chosen for simplicity ofexposition. The same de�nitional methodology holds with respect to other, more general corruption structures (e.g.,[hm97, cdm98]), both in the non-adaptive and the adaptive cases.5Di�erent models, representing di�erent real-life communication settings and network topologies, are of-coursepossible. In particular, if one is concerned only with feasibility results and is not concerned with e�ciency then itmay be simpler to let the parties talk in a `round robin', where in each communication round only a single partysends messages. For sake of generality we do not restrict ourselves to this simpler model.14
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Execution of an n-party protocol by parties P1:::Pn with adversary A1. (a) Each party Pi starts with the security parameter k, input xi and random input ri.(b) The adversary A starts with k, random input r0, input z that includes a set C � [n] ofcorrupted parties and their inputs fxiji 2 Cg, and additional auxiliary input.2. Initialize the round number to l 0.3. As long as there exists an uncorrupted party that did not halt, repeat:(a) Each uncorrupted party Pi, i =2 C, generates fmi;j;ljj 2 [n]g, where each mi;j;l 2 f0; 1g�is a (possibly empty) message intended for party Pj at this round.(b) The adversary A learns fmi;j;lji 2 [n]; j 2 Cg, and generates fmi;j;lji 2 C; j =2 Cg.(c) Each uncorrupted party Pi, i =2 C, receives the messages fmj;i;ljj 2 [n]g.(d) l  l + 14. Each uncorrupted party Pi, i =2 C, as well as A, generate an output. The output of thecorrupted parties is set to ?.Figure 1: A summary of the non-adaptive real-life computation.interactive (computationally unbounded) Turing machine describing the behavior of the corruptedparties. Adversary S starts o� with input that includes the identities and inputs of the corruptedparties, random input, auxiliary input, and the security parameter k.6 In addition, there is an(incorruptible) trusted party, T , that knows k. The ideal process proceeds as follows.Input substitution: The ideal-process-adversary S sees the inputs of the corrupted parties. IfS is active then it may also alter these inputs based on the information known to it so far.Let ~b be the jCj-vector of the altered inputs of the corrupted parties, and let ~y be the n-vector constructed from the input ~x by substituting the entries of the corrupted parties bythe corresponding entries in ~b. If S is passive then no substitution is made and ~y = ~x.Computation: Each party Pi hands its (possibly modi�ed) input value, yi, to the trusted partyT . Next, T chooses rf R Rf , and hands each Pi the value f(k; ~y; rf)i.7Output: Each uncorrupted party Pi outputs f(k; ~y; rf)i, and the corrupted parties output ?. Inaddition, the adversary outputs some arbitrary function of the information gathered duringthe computation in the ideal process. This information consists of the adversary's randominput, the corrupted parties' inputs and the resulting function values ff(k; ~y; rf)i : Pi iscorruptedg.Let advrf;S(k; ~x; z; ~r), where ~r = (rf ; r), denote the output of ideal process adversary S onsecurity parameter k, random input r, and auxiliary input z, when interacting with parties having6In contrast with the real-life adversary, it is essential that the ideal-process adversary be probabilistic. This holdseven in our non-uniform complexity setting. Also, there is no need to explicitly limit the number of corrupted partiesin the ideal process. The de�nition will guarantee that the identities of the corrupted parties in the ideal process areidentical to the identities of the corrupted parties in the real life model.7This formalization means that rf , the `internal random choices of f ', remains unknown to the parties except forthe information provided by the value of f . 15
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input ~x = x1 : : : xn, and with a trusted party for evaluating f with random input rf . Let the(n+ 1)-vectoridealf;S(k; ~x; z; ~r) = advrf;S(k; ~x; z; ~r); idealf;S(k; ~x; z; ~r)1 : : : idealf;S(k; ~x; z; ~r)ndenote the outputs of the parties on inputs ~x, adversary S, and random inputs ~r as described above(Pi outputs idealf;S(k; ~x; z; ~r)i). Let idealf;S(k; ~x; z) denote the distribution of idealf;S(k; ~x; z; ~r)when ~r is uniformly distributed. Let idealf;S denote the distribution ensemblefidealf;S(k; ~x; z)gk2N;h~x;zi2f0;1g�.Comparing computations in the two models. Finally we require that protocol � emulatesthe ideal process for evaluating f , in the following sense. For any (t-limited) real-life adversary Athere should exist an ideal-process adversary S, such that idealf;S d= exec�;A. Spelled out, thisrequirement means that for any value of the security parameter k, for any input vector ~x and anyauxiliary input z, the global outputs idealf;S(k; ~x; z) and exec�;A(k; ~x; z) should be identicallydistributed.8We require that the complexity of the ideal-process adversary S be comparable to (i.e., polyno-mial in) the computational complexity of the real-life adversary A. Introducing complexity issuesin this seemingly \information theoretic" model may appear awkward and out of place at a �rstglance. However, a second inspection will verify that this requirement is very desirable. See Remark1 in Section 4.2.9De�nition 4 (non-adaptive security in the secure channels setting) Let f be an n-partyfunction and let � be a protocol for n parties. We say that � non-adaptively, t-securely evaluates fif for any (non-adaptive) t-limited real-life adversary A there exists a (non-adaptive) ideal-processadversary S whose running time is polynomial in the running time of A, and such thatidealf;S d= exec�;A: (1)If A and S are passive adversaries then we say that � non-adaptively, t-privately evaluates g.Relaxed variants of De�nition 4 are obtained by requiring that the two sides of (1) be onlystatistically indistinguishable, or even only computationally indistinguishable. (The last relaxationis aimed at the case where the adversary is assumed to be probabilistic polynomial time.) Fur-thermore, if De�nition 4 is satis�ed with the exception that the two sides of (1) have statistical(resp., computational) distance at most � then we say that protocol � achieves statistical (resp.,computational) distance �.4.2 DiscussionThis section contains further discussion on De�nition 4.8In the case where the inputs are taken from a �nite domain and equal distribution is required, a simpler for-malization that does not introduce ensembles is su�cient. (Basically, the simpler formalization �xes the securityparameter to an arbitrary value.) We use the current formalization in order to accommodate in�nite input domains,indistinguishability of ensembles, and computationally bounded adversaries.9Here we implicitly assume that the complexity of the protocol � run by the uncorrupted parties is bounded bya polynomial in the complexity of the adversary. If this is not the case then S is allowed to be polynomial in thecomplexity of �. 16
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Remark 1: On the complexity of the ideal-process adversary. We motivate our require-ment that the running time of the ideal-process adversary be polynomial in that of the real-lifeadversary, even in this seemingly \information theoretic" setting. The ideal-process adversary isan imaginary concept whose purpose is to formalize the following requirement: \Whatever gain theadversary obtains from interacting with parties running �, could have also been obtained in an idealsetting where a trusted party is used". Arguably, this requirement also means that interacting with� should not allow the adversary to obtain some gain \for free", where obtaining the same gain inthe ideal process requires considerable computational resources. This aspect of the security require-ment is captured by appropriately limiting the computational power of the ideal process adversary.As seen below, failing to do so results in a considerably weaker notion of security. (We remark thatthis weaker notion may still be of some interest for studying purely information-theoretic aspectsof secure computation.)Let us illustrate this distinction via an example. Let f(x; y) = g(x� y) where g is a one-waypermutation and � denotes bitwise exclusive-or. Assume that parties A and B have inputs x andy respectively, and consider the following protocol for evaluating f : Party A announces x, partyB announces y, and both parties evaluate f(x; y). Our intuition is that this protocol is insecureagainst adversaries that may corrupt one party (say, B): It \gives away for free" both x and y,whereas computing x given only y and f(x; y) may take the adversary a large amount of time.Indeed, if the real-life and ideal-process adversaries are limited to probabilistic polynomial time(and one-way permutations exist), then this protocol is not secure against adversaries that corruptone party. However, if S is allowed unlimited computational power regardless of A's complexity,this protocol is considered secure since S can invert g.Another distinction between the two notions has to do with constructing protocols in the com-putational setting. A convenient design paradigm for secure protocols in this setting proceeds asfollows: First design a secure protocol � in the secure channels setting. Then, construct a protocol�0 from � by encrypting each message. Indeed, it can be readily seen that if � is secure in thesecure channels setting according to the de�nition here (and an appropriate encryption scheme isused) then �0 is secure in the computational setting.10 However, if the above, weaker notion ofsecurity is used then this transformation does not necessarily work.Finally, we remark that other de�nitions of secure protocols do not make this distinction.(Examples include the [b91] de�nition, as well as the de�nition of private protocols in [ck89, k89,kkmo97].) Nonetheless, the protocols described in these works seem to be secure even accordingto the de�nition here. (In fact, we are not aware of protocols in the literature that were provensecure according to the above weaker de�nition, but are insecure according to the de�nition here.)Remark 2: Combining correctness and secrecy. The requirement, made in De�nition 4, thatthe global outputs of the two computations be equally distributed imposes several requirements onthe ideal-process adversary. In particular, it implies:(a) Secrecy. The output of the real-life adversary is distributed equally to the output of the ideal-process adversary.(b) Correctness. The outputs of the uncorrupted parties are equally distributed in the two models.Can the de�nition be weakened to require only that the global output of the ideal-process satis�es(a) and (b)?It was argued in Section 2 that separately requiring secrecy and correctness does not restrict10For instance, semantically secure encryption (as in [gm84]) is su�cient in the non-adaptive model, provided thata di�erent pair of public and private keys are used for each pair of parties. We omit further details.17
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the \inuence" of the adversary on the outputs of the uncorrupted parties, thereby resulting inunsatisfactory de�nitions. Yet, the weakened de�nition proposed here does combine correctness andsecrecy to some extent (since the same ideal-process adversary has to satisfy both requirements).Indeed, the example protocol given in Section 2 (and also the examples in [mr91]) are insecureeven under this weakened de�nition.Nonetheless, we argue that the two entire (n + 1)-vectors describing the global outputs of thetwo computations must be identically distributed, and it does not su�ce to separately require (a)and (b) (i.e., that the two relevant projections of the global outputs are identically distributed).This point is demonstrated via an example: Consider two parties A and B that wish to evaluate thefollowing 2-party function. Both parties have empty input; A should output a random bit, and Bshould have empty output. Of-course, A can simply output a random bit without any interaction;yet, consider the protocol where A also sends B the value of its output. B is instructed to ignore A'smessage and output nothing. This protocol is clearly insecure; yet it satis�es the above weakenedde�nition.11Put in other words, the above example highlights an additional weakness of separating thecorrectness and secrecy requirements, on top of the weakness discussed in Section 2. While thediscussion in Section 2 concentrates on problems related to active adversaries, the example herehighlights problems related to probabilistic functions. In particular, the insecure protocol suggestedhere satis�es the weakened de�nition even if the adversary is passive. This means that, when dealingwith probabilistic functions, secrecy and correctness cannot be separately required even for passiveadversaries.Remark 3: On one pass black-box simulation. In [mr91, b91, c95] the notion of emulationis more restrictive in two respects. First, it is required that the ideal-process adversary be restrictedto having only black-box access to the real-life adversary. More substantially, the adversary canbe run only once and is never `rewinded'. We call this type of simulation one pass black-box.The second restriction is quite limiting. In particular, in the computational setting it prohibitsusage of zero-knowledge protocols within secure protocols. (This is so since demonstrating thezero-knowledge property via black-box simulation requires rewinding the adversary.)It was speculated in [c95, cfgn96] (and, implicitly, also in [mr91, b91]) that restricting theideal-process adversary to one pass black-box simulation is needed in order to prove a generalcomposition theorem. In this work we show that the modular composition theorem holds in thenon-concurrent case even if the ideal-process adversary is not restricted to black-box simulation.Recall that in the context of zero-knowledge existence of a black-box simulator implies existenceof a simulator even for adversaries that have arbitrary auxiliary input [go94]. Using the sametechnique, it can be seen that a similar result holds with respect to De�nition 4.Remark 4: On universal adversaries. The introduction of the auxiliary input (and the quan-ti�cation over all auxiliary inputs) makes the quanti�cation over all real-life adversaries unnecessary:It su�ces to consider a single real-life adversary, namely the `universal adversary' U . AdversaryU will receive in its auxiliary input a description of an arbitrary adversary machine A and willrun A. (Note that the complexity of U running A is only slightly more than the complexity of11We sketch a proof. The case where A is corrupted is straightforward. If B is corrupted then, for each real-lifeadversary B (that controls B), construct the following ideal process adversary S: Run a copy of B, giving it a randombit b0 for the output of A, and output whatever B outputs. The bit b0 will be di�erent (with probability one half)from the output of A in this execution, thus Equation (1) will not be satis�ed. Yet, as long as the outputs of partiesA and B are considered separately the simulation is valid.18
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A.) Consequently, in order to show security of a protocol it su�ces to show a single ideal-processadversary: the one that satis�es De�nition 4 with respect to U .Another consequence of this observation follows. One may wish to strengthen De�nition 4 torequire that there exists an e�cient transformation from real-life adversaries to the correspondingideal-process adversaries. The above argument shows that such strengthening is unnecessary.Remark 5: On \initially-adaptive" adversaries. Consider the following variant of De�nition4. Instead of having the set of corrupted parties given to the adversary as part of its input, let theadversary (both in the real-life and ideal models) choose the identities of the corrupted parties, oneby one in an adaptive way, but under the restriction that all corruptions must be made before anycommunication takes place among the parties. Call this model initially-adaptive.We observe that security in the initially-adaptive model is equivalent to security in the non-adaptive model (as in De�nition 4). Intuitively, this follows from the fact that, until the point wherethe �rst message is sent, the real-life and ideal models are identical. Therefore, any advantage (overnon-adaptive adversaries), gained in the real-life model by the ability to adaptively corrupt partiesbefore the interaction starts, can also be gained in the initially-adaptive ideal model.A sketch of proof follows. Clearly initially-adaptive security implies non-adaptive security.(The argument is similar to that of Remark 1, Section 5.2.) Assume that a protocol � is secureaccording to De�nition 4, and let A be an initially-adaptive real-live adversary. We construct aninitially-adaptive ideal model adversary S that emulates A.Let A0 be the adversary in the (standard) non-adaptive real-life model that gets in its auxiliaryinput an internal state of A at the point where A is done corrupting parties, and runs A fromthat state on. Let S 0 be the ideal-model adversary, guaranteed by De�nition 4, that emulatesA0. Construct the ideal-model adversary S as follows. First S follows, in the ideal model, thecorruption instructions of A. Let � be the state of A once it is is ready to start interacting withthe parties. Next, S runs S 0 with state � given as auxiliary input. It can be seen that S is a validinitially-adaptive ideal-model adversary, and that S emulates A.Remark 6: On related inputs. De�nition 4 requires the protocol to \behave properly" on anyset of inputs to the parties. However, in many real-world situations the participants expect to haveinputs that are correlated in some way (say, the parties have some common input, or inputs thatare taken from a certain distribution), and no requirements are made from the protocol in the casethat the inputs are not of the expected form. The de�nition can be relaxed to accommodate suchweakened security properties by placing appropriate restrictions on the domain of the inputs of theparties. (Alternatively, the evaluated function could be re-de�ned to return some error value incases where the inputs are not in the appropriate domain.)4.3 Modular composition: The non-adaptive caseRecall that we want to break a given task (i.e., a protocol problem) into several partial sub-tasks,design protocols for these partial sub-tasks, and then use these protocols as subroutines in a solutionfor the given task. For this purpose, we want to formalize and prove the informal goal stated in theIntroduction. We do this for the non-concurrent case, where at most one subroutine call is madeat any communication round. This section concentrates on non-adaptive adversaries in the securechannels setting.Formalization and derivation of the composition theorem is done in two steps. First, we statea more general theorem, that holds for any protocol � (not only protocols that securely evaluate19
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functions): replacing ideal evaluation calls made by �, with sub-protocols that securely evalu-ate the corresponding functions, results in a protocol that has essentially the same input-outputfunctionality as �. The composition theorem from the Introduction follows as an easy corollary.The hybrid model. We start by specifying the model for evaluating an n-party function gwith the assistance of a trusted party for evaluating n-party functions f1; :::; fm, and de�ne secureprotocols in that model. The model, called the hybrid model with ideal access to f1; :::; fm (or in shortthe (f1; :::; fm)-hybrid model), is obtained as follows. We start with the real-life model of Section4.1. This model is augmented with an incorruptible trusted party T for evaluating f1; :::; fm. Thetrusted party is invoked at special rounds, determined by the protocol. (For simplicity of expositionwe assume that the number of ideal evaluation calls, the rounds in which the ideal calls take place,and the functions to be evaluated depend only on the security parameter. In addition we assumethat m, the number of di�erent ideally evaluated functions, is �xed.12) In each such round afunction f (out of f1; :::; fm) is speci�ed. The computation at each special round mimics the idealprocess. That is, all parties hand their f -inputs to T (party Pi hands xfi ). As in the ideal process,an active adversary decides on the input values that the corrupted parties hand the trusted party.If the adversary is passive then even corrupted parties hand T values according to the protocol.Next the parties are handed back their respective outputs: Pi gets f(k; xf1::xfn; rf)i, where rf is therandom input to f . Fresh randomness is used in each ideal evaluation call.Let execf1 ;:::;fm�;A (k; ~x; z) denote the random variable describing the output of the computationin the (f1; :::; fm)-hybrid model with protocol �, adversary A, security parameter k, inputs ~x andauxiliary input z for the adversary, analogously to the de�nition of exec�;A(k; ~x; z) in Section 4.1.(We stress that here � is a hybrid of a real-life protocol with ideal evaluation calls to T .) Letexecf1;:::;fm�;A denote the distribution ensemble fexecf1;:::;fm�;A (k; ~x; z)gk2N;h~x;zi2f0;1g�.Replacing an ideal evaluation call with a subroutine call. Next we describe the `mechanics'of replacing an ideal-evaluation call of protocol � at round l with an invocation of an n-partyprotocol �. This is done in a straightforward way. That is, the description of � for round l ismodi�ed as follows. (Other rounds remain una�ected.)1. At the onset of round l each party Pi saves its internal state (relevant to protocol �) on aspecial tape. Let �i denote this state.2. The call to the trusted party T is replaced with an invocation of Pi's code for protocol �.Party Pi's input and random input for � are determined as follows. The input x�i is set tothe value that Pi was to hand the trusted party T at round l, according to protocol �. Therandom input r�i is uniformly chosen in the appropriate domain.3. Once Pi completes the execution of protocol � with local output v�i , it resumes the executionof protocol � for round l, starting from state �i, with the exception that the value to bereceived from T is set to v�i .12We remark that these restrictions can be \circumvented" in a number of ways. For instance we can imaginethat at each other round the parties make an ideal evaluation call to a \universal function", U , de�ned as follows.Each party Pi hands the trusted party a description of an n-party function f and an input xi. If a majority of theparties agree on f then Pi is handed f(~x)i; otherwise a null value is returned. This convention allows us to apply thecomposition theorems to protocols where the parties decide in an adaptive way (say, using some agreement protocol)on the number of ideal evaluation calls and on the function to be evaluated at di�erent calls.20
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Let ��1:::�m denote protocol � (originally designed for the (f1:::fm)-hybrid model) where each idealevaluation call to fi is replaced by a subroutine call to protocol �i.It is stressed that no uncorrupted party resumes execution of protocol � before the currentexecution of protocol �i is completed. Furthermore, we assume that all the uncorrupted partiesterminate each execution of �i at the same round. Otherwise, some parties may resume executingthe calling protocol while others still execute the subroutine protocol, and the non-concurrencycondition is violated.13Theorem 5, stated below, takes a somewhat di�erent approach to the composition operationthan the informal theorem made in the Introduction. It does not require any security propertiesfrom protocol �. Instead, it essentially states that the \input-output functionality" of any protocol� in the hybrid model is successfully \emulated" by ��1;:::;�m in the real-life model. On top ofbeing somewhat more straightforward, this more general statement is relevant even in cases where� performs a task other than secure function evaluation.Theorem 5 (non-adaptive modular composition: General statement) Let t < n, let m 2N, and let f1; :::; fm be n-party functions. Let � be an n-party protocol in the (f1; :::; fm)-hybridmodel where no more than one ideal evaluation call is made at each round, let �1; :::; �m be n-partyprotocols where �i non-adaptively t-securely (resp., t-privately) evaluates fi, and let ��1;:::;�m be thecomposed protocol described above. Then, for any non-adaptive t-limited active (resp., passive) real-life adversary A there exists a non-adaptive active (resp., passive) adversary A� in the (f1; :::; fm)-hybrid model, whose running time is polynomial in the running time of A, and such thatexecf1;:::;fm�;A� d= exec��1;:::;�m ;A: (2)For completeness, we also rigorously state the informal goal stated in the Introduction. Forthat, we �rst de�ne protocols for securely evaluating a function g in the (f1; :::; fm)-hybrid model.This is done via the usual comparison to the ideal process for g:De�nition 6 Let f1; :::; fm; g be n-party functions and let � be a protocol for n parties in the(f1; :::; fm)-hybrid model. We say that � non-adaptively t-securely evaluates g in the (f1; :::; fm)-hybrid model if for any non-adaptive t-limited adversary A (in the (f1; :::; fm)-hybrid model) thereexists a non-adaptive ideal-process adversary S whose running time is polynomial in the runningtime of A, and such that idealg;S d= execf1;:::;fm�;A : (3)If A and S are passive adversaries then we say that � non-adaptively t-privately evaluates g in the(f1; :::; fm)-hybrid model.Corollary 7 (non-adaptive modular composition: Secure function evaluation) Let t <n, let m 2 N, and let f1; :::; fm; g be n-party functions. Let � be an n-party protocol that non-adaptively t-securely (resp., t-privately) evaluates g in the (f1; :::; fm)-hybrid model where no more13Consider, for instance, the following example. Parties A, B, C wish to evaluate the following function, g: Cshould output the input of B; B should output the input of A; A should have empty output. Assume a hybrid modelwith ideal access to a function f where C outputs the input of B. A protocol � for evaluating g in this hybrid modelinstructs parties A, B and C to �rst ideally evaluate f . Next party A is instructed to send B its input. It is easyto see that � securely evaluates g in the f -hybrid model. Let � be a protocol that securely evaluates f . Protocol �takes several rounds to complete, but party A completes � after the �rst round.Now, assume that A sends its input to B as soon as it is done with the execution of � (and, in particular, beforeB and C have completed the execution of �). In this case, a corrupted B may be able to inuence the output of Cin ways that depend on A's input. This would make protocol �� insecure, although both � and � are secure.21
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than one ideal evaluation call is made at each round, and let �1; :::; �m be n-party protocols suchthat �i non-adaptively t-securely (resp., t-privately) evaluates fi. Then the protocol ��1;:::;�m non-adaptively t-securely (resp., t-privately) evaluates g.Proof: Let A be a (non-adaptive) t-limited real-life adversary that interacts with parties running��1;:::;�m. Theorem 5 guarantees that there exists an adversary A� in the (f1; :::; fm)-hybrid modelsuch that execf1;:::;fm�;A� d= exec��1;:::;�m ;A. The security of � in the (f1; :::; fm)-hybrid model guaran-tees that there exists an ideal model adversary (a \simulator") S such that idealg;S d= execf1;:::;fm�;A� .The corollary follows by combining the two equalities. 24.4 Proof of Theorem 5We prove the theorem only for the case of active adversaries (i.e., t-security). The case of passiveadversaries (i.e., t-privacy) can be obtained by appropriately degenerating the current proof.In addition, we �rst treat only the case wherem = 1 and the trusted party T is called only once.The case of multiple functions and multiple (but non-concurrent) calls to T is a straightforwardextension, and is treated at the end of the proof.Section 4.4.1 contains an outline of the proof. The body of the proof is in Section 4.4.2. Section4.4.3 contains some extensions of the proof (and of the theorem).4.4.1 Proof outlineLet f be an n-party function, let � be an n-party protocol in the f -hybrid model, let � be a protocolthat t-securely evaluates f , let �� be the composed protocol. Let A be a (non-adaptive) real-lifeadversary that interacts with parties running ��. We wish to construct an adversary A� in thef -hybrid model that `simulates' the behavior of A. That is, A� should satisfyexec��;A d= execf�;A� : (4)Our plan for carrying out this proof proceeds as follows.1. We construct out of A a real-life adversary, denoted A�, that operates against protocol �as a stand-alone protocol. The security of � guarantees that A� has a simulator (ie, anideal-process adversary), S�, such that exec�;A� d= idealf;S� .2. Out of A and S� we construct an adversary, A�, that operates against protocol � as a stand-alone protocol in the f -hybrid model. We then show that A� satis�es (4).Let us sketch the above steps. In a way, A� represents the \segment" of A that interacts withprotocol �. That is, A� starts with a set C of corrupted parties, the inputs of the parties in C, andan auxiliary input. It expects its auxiliary input to describe an internal state of A, controlling theparties in C, and after interacting with parties running protocol �� up to the round, l�, where �is invoked. (If the auxiliary input is improper then A� halts.) Next, A� interacts with its networkby simulating a run of A from the given state, and following A's instructions. At the end of itsinteraction with parties running �, adversary A� outputs the current state of the simulated A.Adversary A� represents the \segment" of A that interacts with protocol �, where the inter-action with of A with � is replaced with an interaction with S�. That is, A� starts by invoking acopy of A and following A's instructions, up to round l�. At this point, A expects to interact withparties running �, whereas A� interacts with parties that invoke a trusted party for ideal evaluation22
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of f . To continue the execution of A, adversary A� runs S�. For this purpose, S� is given auxiliaryinput that describes the current state of A at round l�. The information from S�'s trusted party isemulated by A�, using A� 's own trusted party for f . Recall that the output of S� is a (simulated)internal state of A at the completion of protocol �. Once protocol � completes its execution andthe parties return to running �, adversary A� returns to running A (starting from the state in S�'soutput) and follows the instructions of A. When A terminates, A� outputs whatever A outputs.Let us address one detail regarding the construction (among the many details that were left outin this sketch). When adversary A� runs S�, the latter expects to see the inputs of the corruptedparties to protocol �; however A� does not know these values. In fact, these values may not evenbe de�ned in the execution of A with ��. The answer to this apparent di�culty is simple: it doesnot matter which values A� hands S� as the inputs of the corrupted parties. The simulation isvalid even if these inputs are set to some arbitrary values (say, the value 0). Intuitively, the reasonis that we construct A� in such a way that it does not `look at' these input values at all. Thusthe output of A� (and consequently also the output of S�) is independent of these arbitrary inputvalues.4.4.2 A detailed proofLet A be an adversary (interacting with parties running ��). First we present the constructions ofadversaries A� and A� . Next we analyze A�, showing (4).Some inevitable terminology. An execution of a protocol (either in the real-life or in the f -hybrid model) is the process of running the protocol with a given adversary on given inputs, randominputs, and auxiliary input for the adversary. (In the f -hybrid model an execution is determinedalso by the random choices of the trusted party for f .) The internal state (or, con�guration) of anuncorrupted party at some round of an execution consists of the contents of all tapes of this party,the head position and the control state, taken at the end of this round. In particular, the internalstate includes all the messages sent to this party at this round. We assume that the internal stateincludes the entire random input of the party for the computation, including the yet-unused parts.The internal state of the adversary is de�ned similarly. The global state of the system at someround of an execution is the concatenation of the internal states of the parties and the adversaryat this round.Let is�;A(l; k; ~x; z; ~r)0 denote the internal state at round l of adversary A with auxiliary inputz and when interacting with parties running protocol � on input ~x = x1 : : : xn, random input~r = r0 : : : rn and with security parameter k, as described above (r0 for A, xi and ri for party Pi).Let is�;A(l; k; ~x; z; ~r)i denote the internal state of party Pi at round l of this execution. (If Pi iscorrupted then is�;A(l; k; ~x; z; ~r)i =?.) Letgs�;A(l; k; ~x; z; ~r) = is�;A(l; k; ~x; z; ~r)0; is�;A(l; k; ~x; z; ~r)1; : : : ; is�;A(l; k; ~x; z; ~r)n:Let gs�;A(l; k; ~x; z) denote the probability distribution of gs�;A(l; k; ~x; z; ~r) where ~r is uniformlychosen.Note that the global state of the system at some round of an execution uniquely determines thecontinuation of the execution from this round until the completion of the protocol. In particular,the global output of the system is uniquely determined given the global state (at any round).We assume an encoding convention of internal states into strings. A string z 2 f0; 1g� is said tobe an internal state of party P at round l if z encodes some internal state of P at round l. (Without23
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loss of generality we can assume that any string z encodes some internal state.) In the sequel weoften do not distinguish between internal states and their encodings.\Running adversary A from internal state z" means simulating a run of A starting at the internalstate described in z. Recall that z contains all the information needed for the simulation; inparticular, it contains all the necessary randomness.Construction of A�. The construction follows the outline described above. More speci�cally,adversary A� proceeds as described in Figure 2, given adversary A.Adversary A�Adversary A�, interacting with parties P1; :::; Pn running protocol �, starts with a value k for thesecurity parameter, a set C of corrupted parties, inputs and random inputs for the parties in C, andauxiliary input z�. Next, do:1. Ignore the input values of the corrupted parties.2. Let l� be the round where protocol �� starts running protocol �. (I.e., this is the round where� calls the trusted party). Verify that the auxiliary input, z�, is a valid internal state of A,controlling the parties in C, at round l��1. If z� is not valid, then halt with no output. Else:(a) Run A from internal state z�. Let P 01:::P 0n denote the (imaginary) set of parties withwhich A interacts.(b) Whenever some uncorrupted party Pi (running �) sends a message m to a corruptedparty Pj, A� lets the simulated A see message m sent from party P 0i (running ��) toparty P 0j.(c) Whenever A instructs some corrupted party P 0j to send a message m to an uncorruptedparty P 0i , adversary A� instructs party Pj to send message m to party Pi.3. Once A halts, A� outputs the current internal state of A and halts.Figure 2: Description of Adversary A� in the non-adaptive modelIt now follows from the security of protocol � that there exists an ideal-process adversary S�such that idealf;S� d= exec�;A� . Note that A� is deterministic, since all of the randomness usedby A is provided in the auxiliary input z�. Yet, the simulator S� is (inherently) probabilistic, sinceit should generate a distribution ensemble that is equal to exec�;A� . In particular, it should mimicthe randomness used by the uncorrupted parties running �.We observe that the special structure ofA� implies that S� has an additional property, describedas follows. Recall that A� ignores the inputs of the corrupted parties, in the sense that its actionsand output do not not depend on these input values. In particular, the copy of A run by A� isnot a�ected by these values. Therefore, the distribution of the output of A�, as well as the globaloutput of the system after running � with A�, remains unchanged if we set the input values of thecorrupted parties to 0. Consequently, the distribution of the global output of the ideal process forevaluating f with S� has the same property. We formalize this discussion as follows. Given aninput vector ~x�, let ~x�j0 denote the vector obtained by replacing all the inputs of the corruptedparties with 0. Then, we have: 24
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Claim 8 For any value of the security parameter k, any input vector ~x� and auxiliary input z� wehave idealf;S�(k; ~x�; z�) d= idealf;S�(k; ~x�j0; z�)Proof: We have argued above that exec�;A�(k; ~x�; z�) d= exec�;A�(k; ~x�j0; z�): However,idealf;S�(k; ~x�; z�) d= exec�;A�(k; ~x�; z�), and idealf;S�(k; ~x�j0; z�) d= exec�;A�(k; ~x�j0; z�). Theclaim follows. 2Construction of A�. Adversary A� follows the outline described in Section 4.4.1. More specif-ically, it proceeds as described in Figure 3.Adversary A�Adversary A�, interacting with parties P1; :::; Pn running protocol � and given access to a trustedparty T for evaluating f , starts with a value k for the security parameter, a set C of corruptedparties, inputs ~xC and random inputs ~rC for the parties in C, and auxiliary input z. Next, do:1. Invoke A on C;~xC; ~rC; z and follow the instructions of A up to round l� � 1. (Recall that sofar � and �� are identical.) In addition, keep another piece of the random input `on the side'.This piece, denoted r�, is used below.2. At the onset of round l�, A expects to start interacting with parties running protocol � (assubroutine), whereas parties P1; :::; Pn call a trusted party for ideal evaluation of function f .In order to continue the run of A, invoke simulator S� as follows.(a) S� is given the set C of corrupted parties. The inputs of these parties are set to 0, andtheir random input are set to r�. (Recall that the inputs of the corrupted parties donot a�ect the distribution of the global output of evaluating f with S�.) The auxiliaryinput z� for S� is set to the current internal state of A.(b) When S� hands its trusted party the inputs of the corrupted parties and asks for theevaluated values of f , invoke the trusted party, T , with the same input values for thecorrupted parties, and hand the value provided by the trusted party back to S�.3. Recall that the output of S� is an internal state of A at the end of the execution of �. Oncethis output, denoted v, is generated, run A from internal state v, and return to following A'sinstructions until the completion of protocol �.4. Once protocol � is completed, output whatever A outputs and halt.Figure 3: Description of adversary A� in the non-adaptive model.Analysis of A�. It is evident that the running time of A� is linear in the running time of A,plus the running time of S�, plus the running time of ��. Fix an input vector ~x and auxiliary inputz for the parties and adversary, as well as some value of the security parameter k. (In particular,the set C of corrupted parties is now �xed.) Steps I-III below demonstrate that:exec��;A(k; ~x; z) d= execf�;A� (k; ~x; z); (5)which establishes the theorem for the case of a single ideal evaluation call. (In Equation (5) andfor the rest of the proof the symbol d= is used to denote equality of distributions, not ensembles.)25
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Let us set some additional notation. Recall that l� is the round where protocol � makes theideal evaluation call, and protocol �� invokes �. Given vectors ~r� = r�0 ; :::; r�n and ~r� = r�0; :::; r�n(where ~r� is interpreted as random input for the execution of �� except for the execution of �,and ~r� is interpreted as random input for the execution of �), let ~r�;� = r�;�0 ; :::; r�;�n denote thecombination of ~r� and ~r� to a full random-input vector for the execution of ��. (That is, party Piuses r�i for the execution of � and r�i for the execution of �, and the adversary uses r�0 during theexecution of � and r�0 at other rounds.) Similarly, given r� = r�0 ; :::; r�n and ~rf , where ~r� is as aboveand ~rf is interpreted as a random vector for round l� in the f -hybrid model (that is, ~rf = rf0 ; rf1where rf0 is the random input for the adversary for this round and rf1 is the random input for thetrusted party for f), let ~r�;f denote the combination of ~r� and ~rf to a full random-input vector forthe execution of � in the f -hybrid model.Step I. Until round l� � 1, protocols � and �� \behave the same". That is, �x some value ~r� asthe random input for the system. We have:gs��;A(l� � 1; k; ~x; z; ~r�) = gs�;A� (l� � 1; k; ~x; z; ~r�): (6)Step II. We show that the global state in the hybrid model at the end of round l� is distributedidentically to the global state in the real-life model at the round where protocol � returns. This isdone in three sub-steps, as follows. (Recall that a value ~r� was �xed in Step I.)1. We �rst assert that the parameters set in the hybrid model for the ideal evaluation of fare identical to the parameters set in the real-life model for the invocation of �. that is,let ~x� = x�1; :::; x�n, where x�i is determined as follows. If Pi is uncorrupted then x�1 is theinput value of Pi for protocol �, as determined in gs��;A(l�� 1; k; ~x; z; ~r�). If Pi is corruptedthen x�i = 0. Let Let z� denote the internal state of A at round l� � 1 in this execution.Similarly, let xfi denote the value that party Pi hands the trusted party for f , as determinedin gs�;A�(l� � 1; k; ~x; z; ~r�), let ~xf = xf1 ; :::; xfn, and let zf denote the internal state of A(within A� 's code) at round l� � 1 of this execution. Then, it follows from Equation (6) that~x� = ~xf j0 and z� = zf .2. Next we assert that the global output of the execution of �, that is implicit in the run of ��with adversary A, is distributed identically to the global output of the ideal evaluation of fthat is implicit in round l� of a run of � in the hybrid model. That is, from the security of �,from Step II.1 and from Claim 8, we have that:exec�;A�(k; ~x�; z�) d= idealf;S�(k; ~x�; z�) = idealf;S�(k; ~xf j0; zf) d= idealf;S�(k; ~xf ; zf): (7)3. Finally we show that the global state in the hybrid model at the at the end of round l� isdistributed identically to the global state in the real-life model when protocol � returns. Thatis, let l� denote the round where the call to protocol � returns (within protocol ��). Then, itfollows from the de�nition of �� and the constructions of A� and A� that:(a) Let ~r� be some random-input vector for protocol �. Then, gs��;A(l�; k; ~x; z; ~r�;�) isobtained from gs��;A(l� � 1; k; ~x; z; ~r�) and exec�;A�(k; ~x�; z�; ~r�) via a (simple, deter-ministic) process, denoted C. (Essentially, process C combines and updates the internalstates of the adversary and the parties. More precisely, this process �rst modi�es eachinternal state is�� ;A(l� � 1; k; ~x; z; ~r�)i by adding exec�;A�(k; ~x�; z�; ~r�)i in the appro-priate place. Next it outputs the internal state of A as it appears in A�'s output in26
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exec�;A�(k; ~x�; z�; ~r�), and appends to it the modi�ed internal states of the uncorruptedparties.)(b) Given some random input vector ~rf for the ideal process for evaluating f , the global stategs�;A�(l�; k; ~x; z; ~r�;f) is obtained from gs�;A� (l��1; k; ~x; z; ~r�) and idealf;S�(k; ~xf ; zf ; ~rf)via the same process, C, as in the real-life model.It follows that for any value of ~r�, and for vectors ~r� and ~rf that are uniformly chosen intheir respective domains, we have gs��;A(l�; k; ~x; z; ~r�;�) d= gs�;A� (l�; k; ~x; z; ~r�;f). Now, let~r� be randomly chosen in its domain. It follows that:gs��;A(l�; k; ~x; z) d= gs�;A� (l�; k; ~x; z): (8)Step III. We assert Equation (5). From the resumption of protocol � until its conclusion, adver-sary A� returns to following the instructions of A. Consequently, the distributions exec��;A(k; ~x; z)and execf�;A� (k; ~x; z) are obtained by applying the same process to the corresponding sides of (8).This completes the proof for the case of a single ideal evaluation call.On multiple ideal evaluation calls. The case of multiple ideal evaluation calls is a straight-forward generalization of the case of a single call. We sketch the main points of di�erence:1. An adversary A�i is constructed for each protocol �i. All the A�i 's are identical to adversaryA� described above, with the exception that protocol � is replaced by �i. (If �i = �j for somei; j then A�i = A�j .)2. Construct an adversary ~A� that is identical to A� described above, with the exception thatat each round where � instructs the parties to ideally evaluate fi, adversary ~A� runs a copyof S�i in the same way as A� runs S�. The auxiliary input of S�i is set to the current internalstate of the simulated A within A� . (Note that there may be several invocations of the samesimulator S�i , where each invocation corresponds to a di�erent ideal evaluation call to fi.These invocations will have di�erent auxiliary inputs. Also, a separate piece of ~A� 's randominput is used for each invocation of some S�i.)3. As in the case of a single ideal evaluation call, it is evident that the running time of ~A� islinear in the running time of A, plus the sum of the running times of all the invocationsof S�1; :::; S�m, plus the running time of ��1;:::;�m. Showing that exec��1 ;:::;�m ;A(k; ~x; z) d=execf1;:::;fm�; ~A� (k; ~x; z) is done in several steps, as follows. Let l(j) denote the round in whichprotocol � makes the jth ideal evaluation call in the hybrid model. The argument of Step Iabove demonstrates that the global states at round l(j)�1 are identical in the two executions.Now, for each j � 1 proceed in two steps:(a) Apply the argument of Step II to establish that the global state in the hybrid model atthe end of round l(j) is distributed identically to the global state in the real-life modelat the round where the jth subroutine call (to some �i) returns.(b) Apply the argument of Step III to establish that the global state in the hybrid modelat round l(j+1) � 1 is distributed identically to the global state in the real-life modelat the round where the (j + 1)th subroutine call is made. If the execution is com-pleted without making the (j + 1)th subroutine call then we have established thatexec��1 ;:::;�m ;A(k; ~x; z) d= execf1;:::;fm�; ~A� (k; ~x; z), as required.27
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4.4.3 ExtensionsOn the propagation of statistical distance. Somewhat relaxed versions of De�nitions 4 and6 allows the two sides of (1) and of (3) to be statistically indistinguishable, rather than equallydistributed. We note that the composition theorem holds in this case as well. That is:1. Theorem 5 holds with the exception that the two sides of (2) are statistically indistinguishable.More speci�cally, in the case of a single ideal evaluation call, if protocol � achieves statisticaldistance �1 then the statistical distance between the two sides of (2) is at most �1. (Theconstruction and analysis of A� remain unchanged, with the exception that the two leftmostdistributions in (7) have statistical distance �1.)In the case of multiple ideal evaluation calls the total statistical distance between the two sidesof (2) is at most the sum of the statistical distances achieved by all the individual protocolinvocations made by the composed protocol. That is, if protocol �i achieves statistical distance�i, and is invoked vi times, then the total statistical distance between the two sides of (2) isat most Pmi=1 vi � �i.2. Corollary 7 holds with the exception that the two sides of (1) are statistically indistinguishable.More speci�cally, in the case of a single ideal evaluation call, if protocol � achieves statisticaldistance �1 and protocol � achieves statistical distance �2 then protocol �� achieves statisticaldistance �1 + �2.In the case of multiple ideal evaluation calls the statistical distance achieved by ��1;:::;�m is atmost the sum of the statistical distances achieved by all the individual protocol invocations,plus the statistical distances achieved by � in the (f1; :::; fm)-hybrid model. That is, assumethat protocol � achieves statistical distance � in the hybrid model, and that protocol �iachieves statistical distance �i, and is invoked vi times. Then protocol ��1;:::;�m achievesstatistical distance at most � +Pmi=1 vi � �i.On computational indistinguishability. The composition theorem holds also for the casewhere the two sides of (1), and also of (2), are only computationally indistinguishable. We deferthe treatment of this case to Section 6.On black-box simulation. A straightforward extension of the proof of Corollary 7 shows thefollowing additional result. Assume that the security of protocol � in the hybrid model is provenvia black-box simulation (see Remark 3, Section 4.2). Then the security of protocol �� can alsobe proven via black-box simulation. Furthermore, if the simulator associated with � does notrewind the adversary, then the simulator associated with �� does not rewind as well. Note that noadditional requirements are made from protocol �. In particular, the security of protocol � neednot be proven via black-box simulation.Remark: The reader may notice that the fact that the communication links are ideally securedoes not play a central role in the proof of Theorem 5. Indeed, the same proof technique (withtrivial modi�cations) is valid in a setting where the adversary sees all the communication amongthe parties. See more details in Section 6. 28
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5 Adaptive adversariesThis section de�nes secure protocols, presents and proves the composition theorem for the case ofadaptive adversaries. Both the de�nition of adaptive security of protocols and the proof of thecomposition theorem in this case are considerably more complex than for the non-adaptive case.Furthermore, proving adaptive security of protocols is typically harder. We thus start with somemotivation for this more complex model.While adaptive security looks like a natural extension of non-adaptive security, a second lookreveals some important di�erences between the two models and the security concerns they capture.Informally, the non-adaptive model captures scenarios where the parties do not trust each other, butbelieve that parties that are `good' remain so throughout. There, the adversary is an imaginaryconcept that represents a collection of `bad parties'. In contrast, the adaptive model capturesscenarios where parties may become corrupted during the course of the computation | either ontheir own accord, or, more realistically, via an external \break-in". Here the adversary models anactual entity that takes active part in the computation. Indeed, external attackers who have theability to adaptively \break-into" parties impose a viable security threat on existing systems andnetworks.Non-adaptive security is implied by adaptive security (see Remark 1, Section 5.2). However,the converse does not hold. In particular, while the non-adaptive model captures many securityconcerns regarding cryptographic protocols, it fails to capture some important concerns that areaddressed in the adaptive model. One such concern is the need to deal with the fact that anadversary may use the communication to decide which parties are worth corrupting. (See Remark 2there.) Another such concern relates to the fact that the adversary may gain considerable advantagefrom seeing the internal data of parties upon corruption (or a \break-in"), after some computationalsteps have taken place. This means that data kept by the uncorrupted parties should never beregarded as safe, and the threat of this data being exposed should play an important part in thesecurity analysis of a protocol. See Remark 3, Section 5.2.14This section attempts to be as self-contained as possible, at the price of some repetition. Still,in cases where the text is very similar to the non-adaptive case with immediate modi�cations weonly note the changes from the corresponding parts of Section 4.Throughout this section we restrict the presentation to the secure channels setting. The compu-tational setting is dealt with in the Section 6. Section 5.1 contains the de�nition of secure protocols.All the remarks made in Section 4.2 and in footnotes throughout Section 4 are relevant here aswell, but are not repeated. In addition, Section 5.2 holds remarks speci�c to the adaptive case.Section 5.3 presents the composition theorem, to be proven in Section 5.4.5.1 De�nition of security: The adaptive caseAs in the non-adaptive case, we develop the de�nitions for the cases of active and passive adversariesside by side, noting the di�erences throughout the presentation. We �rst describe the real-life model;next we describe the ideal process; �nally the de�nition is presented, using essentially the samenotion of emulation as in the non-adaptive case.One obvious di�erence from the de�nition of non-adaptive security is that here the adversary14Limiting the advantage gained by the adversary from exposing the secret data of parties is sometimes calledforward secrecy in the literature. In the context of key exchange, for instance, forward secrecy refers to preventingan adversary from learning, upon corrupting a party, keys that are no longer in use [dow92]. Indeed, the adaptivesetting provides a framework for analyzing forward secrecy of protocols.29
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chooses the identities of the corrupted parties in an adaptive way; upon corruption, it sees theinternal data of the corrupted party. (See more discussion on this point in the sequel.)An additional, more `technical' di�erence is the way in which the interaction between the outsideenvironment and a single protocol execution is captured. In the non-adaptive case this interaction iscaptured by the parties' inputs and outputs, plus an auxiliary input z given to the adversary beforethe computation starts. There, this representation su�ced for proving the composition theorem.In the adaptive case there is an additional way in which the external environment interacts with agiven protocol execution: whenever the adversary corrupts a party it sees the party's entire internalstate, including the state for all the protocol executions which involve this party. This fact has twomanifestations. Consider a protocol execution E that is part of a larger protocol, involving otherprotocol executions. First, when a party is corrupted during execution E the adversary sees theparty's internal state also from other protocol executions, both completed and uncompleted ones.(Here information ows into execution E from the outside environment.) Second, when a party iscorrupted in another protocol execution, the adversary sees the party's internal state relevant toexecution E . (Here information ows from execution E to the outside environment.) A particularlyproblematic case is that of corruptions that occur after execution E is completed.To model this information ow, we introduce an additional entity, representing the externalenvironment, to both the real-life model and the ideal process. This entity, called the environmentand denoted Z , is an interactive Turing machine that interacts with the adversary and the partiesin a way described below. The notion of emulation is extended to include the environment.The real-life model. Multiparty protocols are de�ned as in the non-adaptive case. That is, ann-party protocol � is a collection of n interactive, probabilistic algorithms, where the ith algorithmis run by the ith party, Pi. (Formally, each algorithm is an Interactive Turing machine, as de�nedin [gmr89].) Each Pi has input xi 2 f0; 1g�, random input ri 2 f0; 1g�, and the security parameterk. Informally, we envision each two parties as connected via a private communication channel. Amore complete description of the communication among parties is presented below.An adaptive real-life adversary A is a computationally unbounded interactive Turing machinethat starts o� with some random input. The environment is another computationally unboundedinteractive Turing machine, denoted Z , that starts o� with input z and random input. At certainpoints during the computation the environment interacts with the parties and the adversary. Thesepoints and the type of interaction are speci�ed below. An adversary is t-limited if it never corruptsmore than t parties.At the onset of the computation A receives some initial information from Z . (This informationcorresponds to the auxiliary information seen by A in the non-adaptive case.) Next, the compu-tation proceeds according to some given computational model. For concreteness, we specify thefollowing (synchronous, with rushing) model of computation. The computation proceeds in rounds;each round proceeds in mini-rounds, as follows. Each mini-round starts by allowing A to corruptparties one by one in an adaptive way, as long as at most t parties are corrupted altogether. (Thebehavior of the system upon corruption of a party is described below.) Next A chooses an uncor-rupted party, Pi, that was not yet activated in this round and activates it. Upon activation, Pireceives the messages sent to it in the previous round, generates its messages for this round, andthe next mini-round begins. A learns the messages sent by Pi to already corrupted parties. Onceall the uncorrupted parties were activated, A generates the messages to be sent by the corruptedparties that were not yet activated in this round, and the next round begins.Once a party is corrupted the party's input, random input, and the entire history of the messagessent and received by the party become known to A. (The amount of information seen by the30
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adversary upon corrupting a party is an important parameter of the de�nition. See discussion inRemark 4, Section 5.2.) In addition, Z learns the identity of the corrupted party, and hands someadditional auxiliary information to A. (Intuitively, this information represents the party's internaldata from other protocols run by the newly corrupted party.15) From this point on A learns all themessages received by the party. If A is passive then the corrupted parties continue running protocol�. If A is active (Byzantine) then once a party becomes corrupted it follows the instructions of A,regardless of protocol �.At the end of the computation (say, at some pre-determined round) all parties locally generatetheir outputs. The uncorrupted parties output whatever is speci�ed in the protocol. The corruptedparties output ?. In addition, adversary A outputs some arbitrary function of its internal state.(Without loss of generality, we can imagine that the adversary's output consists of all the infor-mation seen in the execution. This includes the random input, the information received from theenvironment, the corrupted parties' internal data, and all the messages sent and received by thecorrupted parties during the computation.)Next, a \post-execution corruption process" begins. (This process models the information onthe current execution, gathered by the environment by corrupting parties after the execution iscompleted.) First, Z learns the outputs of all the parties and of the adversary. Next Z and Ainteract in rounds, where in each round Z �rst generates a `corrupt Pi' request (for some Pi),and hands this request to A. Upon receipt of this request, A hands Z some arbitrary information.(Intuitively, this information is interpreted as Pi's internal data.) It is stressed that at most tparties are corrupted throughout, even if Z requests to corrupt more parties; in this case A ignoresthe requests of Z . The interaction continues until Z halts, with some output. Without loss ofgenerality, this output can be Z 's entire view of its interaction with A and the parties. Finally, theglobal output is de�ned to be the output of Z (which, as said above, may include the outputs ofall parties as well as of the adversary). See further discussion on the role of the environment Z inRemark 5, Section 5.2. The computational process in the real-life model is summarized in Figure4. We use the following notation. Let the global output exec�;A;Z (k; ~x; z; ~r) denote Z 's output oninput z, random input rZ and security parameter k, and after interacting with adversary A andparties running protocol � on inputs ~x = x1 : : :xn, random input ~r = rZ; r0 : : : rn, and securityparameter k as described above (r0 for A; xi and ri for party Pi). Let exec�;A;Z(k; ~x; z) denote therandom variable describing exec�;A;Z(k; ~x; z; ~r) where ~r is uniformly chosen. Let exec�;A;Z de-note the distribution ensemble exec�;A;Z(k; ~x; z)gk2N;h~x;zi2f0;1g�. (The formalization of the globaloutput exec�;A;Z is di�erent than in the non-adaptive case, in that here the global output containsonly the output of the environment. We remark that the more complex formalization, where theglobal output contains the concatenation of the outputs of all parties and adversary, would yieldan equivalent de�nition; this is so since the environment Z sees the outputs of all the parties andthe adversary. We choose the current formalization for its simplicity.)The ideal process. The ideal process is parameterized by the function to be evaluated. Thisis an n-party function f : N � (f0; 1g�)n � f0; 1g� ! (f0; 1g�)n, as de�ned in Section 3. Eachparty Pi has input xi 2 f0; 1g�; no random input is needed. Recall that the parties wish toevaluate f(k; ~x; rf)1; :::; f(k; ~x; rf)n, where rf R f0; 1gs and s is a value determined by the security15For sake of simplicity, we do not restrict the way in which Z computes the data provided to the adversaryupon corruption of a party. However, we note that a somewhat weaker de�nition where this data is �xed beforethe computation starts (but remains unknown to the adversary until the party is corrupted) is su�cient, both forcapturing security and for the proof of the composition theorems.31
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Execution of an n-party protocol by parties P1:::Pn with adversary A and environment Z1. (a) Each party Pi starts with the security parameter k, input xi and random input ri.(b) The adversary A starts with k and random input r0. The environment Z starts withinput z and random input rZ.2. Initialize the round number to l 0. A receives an initial message from Z.3. As long as there exists an uncorrupted party that did not halt, do:(a) As long as there exists an uncorrupted party that was not activated in this round, do:i. As long as A decides to corrupt more parties, do:A. A chooses a party Pi to corrupt. Z learns the identity of Pi.B. A receives Pi's input, random input, and all the messages that Pi received inthis interaction. In addition, A receives a message from Z.ii. A activates an uncorrupted party Pi. If l > 1 then Pi receives the messagesfmj;i;l�1jj 2 [n]g sent to it in the previous round. Next, Pi generates fmi;j;ljj 2[n]g, where each mi;j;l 2 f0; 1g� is a (possibly empty) message intended for partyPj at this round. The adversary A learns fmi;j;ljPj is corruptedg.(b) A generates the messages fmi;j;ljPi is corrupted and j 2 [n]g.(c) l  l + 14. Each uncorrupted party Pi, as well as A, generates an output. Z learns all outputs.5. As long as Z did not halt, do:(a) Z sends A a message, interpreted as \corrupt Pi" for some uncorrupted party Pi.(b) A may corrupt more parties, as in Step 3(a)i above.(c) A sends Z a message, interpreted as Pi's internal data.6. Z halts with some output.Figure 4: A summary of the adaptive real-life computation.parameter, and Pi learns f(k; ~x; rf)i. The model also involves an adaptive ideal-process-adversary S,which is an interactive Turing machine that has random input r0 and security parameter k, and anenvironment Z which is a computationally unbounded interactive Turing machine that starts withinput z, random input rZ and the security parameter.16 In addition, there is an (incorruptible)trusted party, T . The ideal process proceeds as follows.First corruption stage: First, as in the real-life model, S receives auxiliary information from Z .Next, S proceeds in iterations, where in each iteration S may decide to corrupt some party,based on S's random input and the information gathered so far. Once a party is corruptedits input becomes known to S. In addition, Z learns the identity of the corrupted party andhands some extra auxiliary information to S. Let B denote the set of corrupted parties at16There is no need to explicitly restrict the number of parties corrupted by S. The de�nition of security (inparticular, the fact that the identities of the corrupted parties appear in the global output) will guarantee that anideal-model adversary S (emulating some real-life adversary A) corrupts no more parties than A does. In fact, it willbe guaranteed that the distribution ensembles describing the parties corrupted by A and by S are identical.32
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the end of this stage.Computation stage: Once S completes the previous stage, the parties hand the following valuesto the trusted party T . The uncorrupted parties hand their inputs to the computation. Thecorrupted parties hand values chosen by S, based on the information gathered so far. (If Sis passive then even the corrupted parties hand their inputs to T .)Let~b be the jBj-vector of the inputs contributed by the corrupted parties, and let ~y = y1; :::; ynbe the n-vector constructed from the input vector ~x by substituting the entries of the corruptedparties by the corresponding entries in ~b. Then, T receives yi from Pi. (If S is passive then~y = ~x). Next, T chooses rf R Rf , and hands each Pi the value f(k; ~y; rf)i.Second corruption stage: Upon learning the corrupted parties' outputs of the computation, Sproceeds in another sequence of iterations, where in each iteration S may decide to corruptsome additional party, based on the information gathered so far. Upon corruption, Z learnsthe identity of the corrupted party, S sees the corrupted party's input and output, plus someadditional information from Z as before.Output: Each uncorrupted party Pi outputs f(k; ~y; rf)i, and the corrupted parties output ?. Inaddition, the adversary outputs some arbitrary function of the information gathered duringthe computation in the ideal process. All outputs become known to Z .Post-execution corruption: Once the outputs are generated, S engages in an interaction withZ , similar to the interaction of A with Z in the real-life model. That is, Z and S proceedin rounds where in each round Z generates some `corrupt Pi' request, and S generatessome arbitrary answer based on its view of the computation so far. For this purpose, S maycorrupt more parties as described in the second corruption stage. The interaction continuesuntil Z halts with an arbitrary output.Let idealf;S;Z(k; ~x; z; ~r), where ~r = rZ ; r0; rf , denote the output of environment Z on in-put z, random input rZ and security parameter k, after interacting as described above withan ideal-process adversary S and with parties having input ~x = x1 : : : xn and with a trustedparty for evaluating f with random input rf . Let idealf;S;Z (k; ~x; z) denote the distribution ofidealf;S;Z(k; ~x; z; ~r) when ~r is uniformly distributed. Let idealf;S;Z denote the distribution en-semble fidealf;S;Z (k; ~x; z)gk2N;h~x;zi2f0;1g�.Comparing computations in the two models. As in the non-adaptive case, we require thatprotocol � emulates the ideal process for evaluating f . Yet here the notion of emulation is slightlydi�erent. We require that for any real-life adversary A and any environment Z there should existan ideal-process adversary S, such that idealf;S;Z d= exec�;A;Z . Note that the environment isthe same in the real-life model and the ideal process. This may be interpreted as saying that\for any environment and real-life adversary A, there should exist an ideal-process adversary thatsuccessfully simulates A in the presence of this speci�c environment." Furthermore, we require Sto be polynomial in the complexity of A, regardless of the complexity of Z (see Remark 1, Section4.2).De�nition 9 (adaptive security in the secure channels setting) Let f be an n-party func-tion and let � be a protocol for n parties. We say that � adaptively, t-securely evaluates f if for33
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any adaptive t-limited real-life adversary A, and any environment Z, there exists an adaptive ideal-process adversary S whose running time is polynomial in the running time of A, such thatidealf;S;Z d= exec�;A;Z : (9)If A and S are passive adversaries then we say that � adaptively t-privately evaluates g.Spelled out, Equation (9) means that for any value of the security parameter k, for any input vector~x and any auxiliary input z, the global outputs idealf;S;Z(k; ~x; z) and exec�;A;Z(k; ~x; z) shouldbe identically distributed.5.2 DiscussionRemark 1: Adaptive security implies non-adaptive security. Intuitively, non-adaptivesecurity appears as a restricted version of adaptive security. We a�rm this intuition by observingthat De�nition 9 (adaptive security) implies De�nition 4 (non-adaptive security).Let us sketch a proof: Let � be a protocol that adaptively t-securely evaluates some function,and let A be a non-adaptive t-limited adversary. We construct a non-adaptive ideal-model adversaryS that emulates A.Let A0 be the following adaptive t-limited real-life adversary. A0 receives from its environmenta value z that is interpreted as a set C of parties to corrupt, and a value �. Next, A0 corrupts theparties in C and runs A on the set C of corrupted parties, and with auxiliary input �. Let Z be theenvironment that, on input z, provides the adversary (at the beginning of the interaction) with thevalue z and remains inactive from this point on. Let S 0 be the (adaptive) ideal-model adversarythat emulates A0 in the presence of Z . Note that S 0 must eventually corrupt exactly the parties inthe set provided by Z .The non-adaptive ideal-model adversary S proceeds as follows. Given a set C of corruptedparties together with their inputs, plus auxiliary input �, ideal-model adversary S will proceed byrunning S 0; in addition, S plays the environment for S 0 and provides it with a value z that consistsof the set C of parties to be corrupted plus the value �. Whenever S 0 corrupts a party in C, Sprovides S 0 with the input of that party. Finally, S outputs whatever S 0 outputs. It is evident thatS emulates A.Remark 2: Additional concerns captured by adaptive security (I). We highlight oneaspect of the additional security o�ered by the adaptive-adversary model, namely the need toaccount for the fact that the adversary may learn from the communication which parties are worthcorrupting more than others. This is demonstrated via an example, taken from [cfgn96]. Considerthe following secret sharing protocol, run in the presence of an adversary that may corrupt t = O(n)out of the n parties: A dealer D chooses at random a small set S of, say, m = pt parties. (Infact, any value !(logn) < m < t will do.) Next, D shares its secret among the parties in S usingan m-out-of-m sharing scheme. In addition D publicizes the set S. (For concreteness, assumethat the protocol evaluates the null function.) Intuitively, this scheme lacks in security since S ispublic and jSj < t. Indeed, an adaptive adversary can easily �nd D's secret, without corruptingD, by corrupting the parties in S. However, any non-adaptive adversary that does not corruptD learns D's secret only if S happens to be identical to the pre-de�ned set of corrupted parties.This happens only with probability that is exponentially small (in m). Consequently, this protocolis secure in the presence of non-adaptive adversaries, if a small error probability is allowed. (Inparticular, if n is polynomial in k then De�nition 4 is satis�ed with the exception that the twosides of (1) are statistically indistinguishable.) 34
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Remark 3: Additional concerns captured by adaptive security (II). Another securityconcern that is addressed in the adaptive model, and remains unaddressed in the non-adaptivemodel, is the need to limit the information gathered by the adversary when it corrupts (or breaksinto) parties and sees their internal data. This means that even the internal memory contents of\honest" parties cannot be regarded as \safe" and could compromise the security.The de�nition of adaptive security addresses this concern by requiring, essentially, that theinternal state seen by the adversary upon corrupting a party is generatable (by the ideal-processadversary) given only the input of this party and the adversary's view so far. Let us demonstratehow this requirement a�ects the de�nition, via a the following example. Consider a protocol whereeach party is instructed to publicize a commitment to its input, and then halt with null output. Forconcreteness, assume that each party has binary input and the commitment is realized via a claw-free permutation pair f0; f1 that is known in advance. That is, each party chooses a random elementr in the common domain of f0; f1 and broadcasts fb(r), where b is the party's input. It is easy tosee that in the non-adaptive model this protocol securely evaluates the null function. However, wedo not know how to prove adaptive security of this protocol. In fact, if n, the number of parties, ispolynomial in the security parameter and claw-free permutations exist then this protocol does nott-securely evaluate the null function in the adaptive model, for t > !(logn). (A proof appears in aslightly di�erent form in [co99].)The above discussion may bring the reader to wonder whether it is justi�able to assert thatthe above protocol is insecure. Indeed, at �rst glance this protocol appears to be \harmless",in the sense that it has no apparent security weakness. This appearance may be strengthenedby the fact that the commitment is perfectly secure, i.e. the messages sent by the parties arestatistically independent from the inputs. Nonetheless, we argue that this appearance is false, andthe above protocol has a serious security aw. Indeed, the protocol provides the adversary with a(computationally binding) commitment to the inputs of the parties; this commitment may be usefulin conjunction with additional information that may become available to the adversary (say, viaother protocol executions). Such a commitment could not have been obtained without interactingwith the parties.Remark 4: Erasing local data. A natural method for limiting the information seen by theadversary upon corrupting a party is to include special erasure instructions in the protocol, therebyenabling the parties to remove sensitive data from their local state when this data is no longernecessary.Indeed, timely erasures of sensitive data can greatly simplify the design and analysis of protocols.(The case of encryption is an instructive example [bh92, cfgn96].) However, basing the security ofa protocol on such erasures is often problematic. One reason is that in real-world systems erasuresdo not always work: System backups are often hard to prevent (they are even made without aprotocol's knowledge), and retrieving data that was stored on magnetic media and later erased isoften feasible. An even more severe reason to not trust erasure instructions is that they cannot beveri�ed by an outside observer. Thus, in settings where the parties are mutually distrustful it isinadvisable to base the security of one party on the \good will" and competence of other partiesto e�ectively erase data as instructed. Consequently, a protocol that o�ers security without usingdata erasures is in general preferable to one that bases its security on data erasures.Let us highlight an important scenario where putting trust in internal erasures is more reason-able. This is the case of threshold cryptography (see, e.g., [df89]) where the parties are typicallyspecial-purpose servers controlled by a single administrative authority, and use erasures to maintainthe overall security of the system in the face of break-ins by outsiders. In particular, in the case35
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of proactive security [oy91, cghn97] trust in erasures is unavoidable since there the attacker maybreak into all parties at one time or another.The distinction between trusting or dis-trusting data erasures is manifested in the de�nitionvia the amount of information seen by the real-life adversary upon corrupting a party. Trustingerasure instructions to be ful�lled and successful is modeled by letting the adversary see only thecurrent internal state of the party. Dis-trusting the success of such instructions is modeled byallowing the adversary to see the entire past internal states of the party. (This amounts to allowingthe adversary to see the party's input, random input, and all the messages ever received by theparty.) In this work we concentrate on the case where erasures are not trusted. Nonetheless, thecomposition theorem holds in both cases.Finally, we remark that there exist additional, potentially harmful ways for parties to deviatefrom the speci�ed protocol in a manner that is undetectable by an outside observer. For instance,a party can use its random input in a di�erent way than speci�ed in the protocol. Proving securityof protocols in a model where all parties, even uncorrupted ones, may carry out such deviationsis much harder (in fact, it is impossible in some settings). Consequently we do not consider suchmodels; They are mentioned in [cfgn96] and studied in more depth in [co99]. (The motivationthere is to deal with situations where all parties may deviate from the protocol, as long as thedeviation remains undetected by other parties.)Remark 5: On the modeling of the environment. Recall that the environment machine isa generalization of the notion of auxiliary input. Indeed, the environment can be used to providethe adversary with auxiliary input at the onset of the interaction. In addition, it can disclosemore information to the adversary in an adaptive way throughout the computation. Furthermore,the environment obtains information from the adversary, again in an adaptive way, even after theexecution of the protocol is completed.Informally, in the adaptive model the auxiliary information can be thought of as consistingof two components: a \non-uniform" component, represented by the input z of the environmentmachine; and an \algorithmic" component, represented by the environment machine itself, thatadaptively decides on the way in which information is \released" to the adversary and obtainedfrom it throughout the computation.Let us address two additional points regarding the modeling of the environment:On the need in the environment as a separate entity. A natural question is whetherit is possible to simplify the de�nition of adaptive security by merging the adversary A and theenvironment Z into a single adversarial entity. We argue that the separation is essential. Inparticular, the roles played by the two entities in the de�nition are quite di�erent. Let us stress twomain technical di�erences. Firstly, the environment remains the same in the real-life computationand in the ideal process, whereas the adversary may be modi�ed. Secondly, the environment seesmuch more information than the adversaries A and S. In particular, the input of Z may containthe inputs of all parties at the onset of the computation. (Indeed, the proof of the compositiontheorem below uses an environment machine that sees all this information.) Furthermore, Z seesthe outputs of all parties from the computation.Nonetheless, one can do without the environment machine in some simpli�ed cases. Morespeci�cally, the de�nition of security can be simpli�ed as follows, in the case where local dataerasures by parties are allowed. (This is the case discussed in Remark 4, where the adversarysees only the current internal state of a newly corrupted party). First adopt the convention that,whenever a party completes executing a protocol, it erases all the internal data relevant to thisprotocol execution, except for the local output. Next, the de�nition is simpli�ed in two steps:36
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First, note that the post-execution corruption phase is no longer necessary. This is so, sincecorrupting a party after the execution of the protocol is completed reveals only the party's localoutput. However, the environment anyhow learns the local outputs of all parties as soon as these aregenerated. Consequently, the post-execution corruption phase does not provide the environmentwith any new information.Second, notice that now the role of the environment is restricted to providing the adversarywith initial auxiliary input and with an additional auxiliary input whenever a party is corrupted.But these auxiliary inputs represent information that was �xed before the current protocol began.(These are the internal states of the corrupted parties from other protocol executions.) Thus, theenvironment machine can be replaced by a set z1; :::; zn of auxiliary inputs, where the adversaryobtains zi upon the corruption of party Pi.On the order of quantifiers. An alternative formulation to De�nition 9 requires that a singleideal-process adversary S will satisfy (9) with respect to any environment Z . We note that thisseemingly stronger formulation is in fact implied by (and thus equivalent to) De�nition 9.17 Wechoose the current formulation because it appears a bit more natural. It also makes the proof ofthe composition theorem somewhat clearer.5.3 Modular composition: The adaptive caseWe formalize the composition theorem for the non-concurrent case, with adaptive adversaries, in thesecure channels setting. As in the non-adaptive case, we �rst de�ne the hybrid model and describehow an ideal evaluation call is replaced by a subroutine protocol. Next we state the compositiontheorem in its more general form. The theorem from the Introduction follows as an easy corollary.The hybrid model. The (adaptive) hybrid model with ideal access to f1; :::; fm (or in shortthe (f1; :::; fm)-hybrid model), is de�ned analogously to the non-adaptive case. We start with thereal-life model of Section 5.1. This model is augmented with an incorruptible trusted party T forevaluating f1; :::; fm. The trusted party is invoked at special rounds, determined by the protocolrun by the uncorrupted parties. In each such round a function f (out of f1; :::; fm) is speci�ed. Thecomputation at each special round mimics the ideal process. That is, �rst the adversary adaptivelycorrupts parties, and learns the internal data of corrupted parties. In addition, for each corruptedparty the adversary receives information from the environment Z . Next the parties hand theirf -inputs to T . The values handed by the uncorrupted parties are determined by the protocol. Thevalues handed by the corrupted parties are determined by the adversary. (If the adversary is passivethen even corrupted parties hand T values according to the protocol.) Once T receives the valuesfrom the parties (value xfi from party Pi), it hands the respective outputs back to the parties (Pireceives f(k; xf1 ::xfn; rf)i). Finally the adversary can again adaptively corrupt parties as before.18Let execf1;:::;fm�;A;Z (k; ~x; z) denote the random variable describing the global output of the com-putation (i.e., the output of the environment Z) in the (f1; :::; fm)-hybrid model with protocol �,adversaryA, security parameter k, inputs ~x for the parties and z for Z , analogously to the de�nition17The argument is similar to that of Remark 4 in Section 4.2: Assume that a protocol is secure according toDe�nition 9 and let A be a real-life adversary. Let ZU be the \universal environment" that takes as input adescription of an environment Z and a value z and runs Z on input z. De�nition 9 guarantees that there exists anideal-model adversary SU that emulates A in the presence of ZU . It follows that SU emulates A in the presence ofany environment. That is, SU satis�es the above stronger formulation.18As in the non-adaptive case, we assume that the rounds in which ideal evaluations take place, as well as thefunctions to be evaluated, are �xed and known beforehand. This restriction can be circumvented as there.37
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of exec�;A;Z(k; ~x; z) in Section 5.1. (We stress that here � is not a real-life protocol and uses idealcalls to T .) Let execf1;:::;fm�;A;Z denote the distribution ensemble fexecf1;:::;fm�;A;Z (k; ~x; z)gk2N;h~x;zi2f0;1g�.Replacing an ideal evaluation call with a subroutine call. The `mechanics' of replacingan ideal-evaluation call of protocol � with a call to a subroutine real-life protocol, �, are identicalto the non-adaptive case (Section 4.3). Recall that ��1:::�m denotes protocol � where each idealevaluation of fi is replaced by a call to �i.Theorem 10 (Adaptive modular composition: General statement) Let t < n, letm 2 N,and let f1; :::; fm be n-party functions. Let � be an n-party protocol in the (f1; :::; fm)-hybrid modelwhere no more than one ideal evaluation call is made at each round, and let �1; :::; �m be n-partyprotocols where �i adaptively t-securely (resp., t-privately) evaluates fi. Then, for any adaptive t-limited active (resp., passive) real-life adversary A and for any environment machine Z there existsan adaptive active (resp., passive) adversary S in the (f1; :::; fm)-hybrid model whose running timeis polynomial in the running time of A, and such thatexecf1;:::;fm�;S;Z d= exec��1;:::;�m ;A;Z : (10)As in the non-adaptive case, Theorem 10 does not assume any security properties from protocol�. Instead, it essentially states that the \input-output functionality" of any protocol � in the hybridmodel is successfully \emulated" by ��1;:::;�m in the real-life model. Before rigorously stating theinformal composition theorem from the Introduction in the adaptive setting, we de�ne protocolsfor securely evaluating a function g in the (f1; :::; fm)-hybrid model:De�nition 11 Let f1; :::; fm; g be n-party functions and let � be a protocol for n parties in the(f1; :::; fm)-hybrid model. We say that � adaptively t-securely evaluates g in the (f1; :::; fm)-hybridmodel if for any adaptive t-limited adversary A (in the (f1; :::; fm)-hybrid model) and any envi-ronment machine Z there exists an adaptive ideal-process adversary S, whose running time ispolynomial in the running time of A, and such that:idealg;S;Z d= execf1;:::;fm�;A;Z : (11)If A and S are passive adversaries then we say that � adaptively t-privately evaluates g in the(f1; :::; fm)-hybrid model.Corollary 12 (adaptive modular composition: Secure function evaluation) Let t < n,let m 2 N, and let f1; :::; fm be n-party functions. Let � be an n-party protocol that adaptivelyt-securely (resp., t-privately) evaluates g in the (f1; :::; fm)-hybrid model, and assume that no morethan one ideal evaluation call is made at each round. Let �1; :::; �m be n-party protocols that adap-tively t-securely (resp., t-privately) evaluate f1; :::; fm, respectively. Then the protocol ��1;:::;�madaptively t-securely (resp., t-privately) evaluates g.Proof: Let A be an adaptive t-limited real-life adversary that interacts with parties running��1;:::;�m, and let Z be an environment machine. Theorem 10 guarantees that there exists anadversary A� in the (f1; :::; fm)-hybrid model such that execf1;:::;fm�;A�;Z d= exec��1 ;:::;�m ;A;Z . Thesecurity of � in the (f1; :::; fm)-hybrid model guarantees that there exists an ideal model adversary(a \simulator") S such that exec��1 ;:::;�m ;A;Z d= idealg;S;Z , satisfying De�nition 9. 238



www.manaraa.com

5.4 Proof of Theorem 10As in the non-adaptive case, we only prove the theorem for the case of active adversaries (i.e.,t-security). In addition, we only treat the case where the trusted party T is called only once. Theextension to the case of multiple functions and multiple calls to T is the same as in the non-adaptivecase. Section 5.4.1 contains an outline of the changes from the non-adaptive case. The body of theproof is in Section 5.4.2. All the extensions from Section 4.4.3 are relevant here as well.5.4.1 Additional di�cultiesThe proof outline is similar to that of the non-adaptive case. We sketch the additional di�cultiesarising from the adaptiveness of the adversaries and simulators. Full details appear in Section5.4.2. Recall that � is a protocol in the f -hybrid model, � is a protocol for evaluating f , and ��is the composed protocol. A is a given adversary that interacts with ��. In addition, we nowhave an environment Z that interacts with A. A� is a constructed adversary that interacts with�, following the relevant instructions of A. Adversary A� follows the instructions of A relevant tothe interaction with protocol �; the interaction of A with � is simulated using S�, the simulator forA�.1. Recall that A� operates by running a copy of adversary A. In the adaptive case A� hasto accommodate corruption requests made by A throughout the execution of ��. For thispurpose, A� is given access to an arbitrary environment machine and proceeds as follows.Corruption requests that occur before � is invoked are answered using the initial data receivedfrom the environment machine. Whenever the simulated A requests to corrupt party P duringthe execution of �, adversary A� corrupts P in its real-life interaction and hands P 's internaldata toA. P 's internal data from the (suspended) execution of protocol � is obtained from theenvironment. Once � is completed and A� generates its output, a post-execution corruptionphase starts where A� receives corruption requests from its environment, corrupts the relevantparties, and provides the environment with the internal data of the corrupted parties.2. In the adaptive case specifying an environment is necessary for obtaining a simulator S� forA�. For this purpose, an environment machine, denoted Z�, is constructed as follows. (Notethat Z� is in general di�erent than the given environment Z .) The input of Z� will describe aglobal state of an execution of �� with A and Z at round l(�)�1. Z� will orchestrate a run of�� from the given global state, with the following exception: Z� will ignore the random inputsof the uncorrupted parties for the execution protocol �. Instead, Z� will provide A� with thenecessary information for interacting with parties running �, and will extract the necessaryinformation from the resulting interaction. More speci�cally, Z� �rst provides A� with theinternal state of A when � is invoked; next, for each party corrupted during the execution of�, Z� provides A� with the internal state of that party from the suspended execution of �;�nally, it extracts from A� the internal state from the execution of � of the parties that arecorrupted by A after � is completed.3. Recall that A� operates by simulating copies of A and S�. Here this is done as follows. LetP 01; :::; P 0n denote the set of (simulated) parties with which S� interacts, and let P 001 ; :::; P 00ndenote the set of (simulated) parties with which A interacts.(a) When adversary A� runs the simulator S�, it has to accommodate S�'s corruption re-quests made in the ideal process. This is done as follows: whenever S� requests to39
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corrupt a party P 0i in the ideal model, adversary A� corrupts Pi in its hybrid model,and learns the value v that Pi is about to hand its trusted party. Next, A� \plays theenvironment for A�" and hands v back to S� as the input of P 0i . If P 0i is corrupted afterthe ideal call to the trusted party is made, then the output of P 0i value is also given toS�.(b) Adversary A� has to accommodate A's corruption requests made after the (simulated)execution of � is completed. This is done as follows: Whenever A requests to corrupt aparty P 00i , adversary A� corrupts Pi in its hybrid model, and obtains the internal data ofPi from protocol �. In addition, A� plays the role of the environment for S�, and asksS� to corrupt P 0i . Then, A� combines the internal data of Pi from protocol � and S�'sanswer, obtains simulated internal data for P 00i , and hands this value to the simulatedA.An important point in the analysis is that the way in which A� `plays the role of the envi-ronment for S�' is identical to an interaction between S� and Z�.5.4.2 A detailed proofLet A be an adversary and let Z be an environment (interacting with parties running ��). Firstwe present the constructions of A�, Z�, and A� . Next we show that exec�� ;A;Z d= execf�;A� ;ZTerminology. We use the same notions of executions, internal states, and running an adversaryfrom an internal state as in the non-adaptive case (Section 4.4.2). Yet here these notions referof-course to the adaptive model. In addition, the notion of global state is modi�ed as follows.(Recall that in the non-adaptive case the global state was the concatenation of the local states ofthe uncorrupted parties and the adversary.)1. The global state is augmented to include all the information that the uncorrupted parties haveever seen in the past. That is, let the internal history of party Pi at round l be the concatenationof all the internal states from the beginning of the execution through round l. The globalstate at round l is now the concatenation of the internal histories of the uncorrupted parties,together with the internal state of the adversary.This convention is needed to maintain the property that the global state of an executionat any round uniquely determines the continuation of the execution until its completion.(Recall that upon corrupting a party the adversary gets access to all the information that theparty knew in the past; See Remark 4 in Section 5.2 for more discussion on this de�nitionaldecision.)2. The global state is augmented to include also the local state of the environment.3. The global state is extended to rounds after the execution of the protocol has been completed,until the the environment halts.Let gs��;A;Z(l; k; ~x; z; ~r) denote the global state at round l of an execution of protocol �� in thereal-life model with adversary A, environment Z , security parameter k, inputs ~x for the partiesand z to the environment, and random inputs ~r. Let gsf�;A� ;Z(l; k; ~x; z; ~r) be similarly de�ned withrespect to protocol � and adversary A� in the f -hybrid model.40
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Adversary A�Let Z� denote the environment, let P1; :::; Pn denote the parties running protocol �, and let k be avalue for the security parameter. (Note that A� uses the code of A.)1. Let l� be the round where protocol �� starts running protocol �. (This is the round where �calls T ). First receive a value ��0 from the environment, and verify that ��0 is a valid internalstate of A at round l� � 1. If ��0 is not valid then halt with empty output.2. Corrupt the parties that are corrupted in ��0 , and ignore their inputs and the correspondingvalues received from the environment. (Call these parties the a-priori corrupted parties.)3. Continue the above run of A from round l� on, follow A's instructions, and hand the gatheredinformation to A. More precisely, let P 01; :::; P 0n denote the simulated parties with which Ainteracts. Then:(a) Whenever a message is sent from an uncorrupted party Pi to a corrupted party, handthis message to A as coming from P 0i .(b) Whenever A instructs some corrupted party P 0i to send a message to an uncorruptedparty P 0j, instruct Pi to send the same message to Pj.(c) When A corrupts a new party, P 0i , during the execution of protocol �, proceed as follows.First corrupt Pi in its real-life model and obtain Pi's internal history for protocol �. Inaddition, A needs to be provided with the internal history of P 0i from the execution ofprotocol �, and with the information that A receives from its own environment at thispoint. This information is assumed to be provided by the environment, Z�, upon thecorruption of Pi. That is, treat the value ��i received from Z� upon the corruption ofPi as a concatenation of two values ��i = ha; bi. The value a is treated as the internalhistory of P 0i at round l��1; it is combined with the internal history of Pi (pertaining toprotocol �) and handed to A as the internal data of P 0i (pertaining to protocol ��). Thevalue b is handed to A as the value received from A's environment upon the corruptionof P 0i .4. Once protocol � is completed, output the current internal state of the simulated A. Next,interact with the environment Z�, as follows: When the environment asks for corruptionof Pi, if less than t parties are corrupted, corrupt Pi and hand Pi's internal history to theenvironment. If t parties are already corrupted then ignore the corruption request.Figure 5: Description of Adversary A� in the adaptive model.Construction of A�. Given adversary A, adversary A� proceeds as in the above outline. A morecomplete description appears in Figure 5.Construction of Z�. The environment Z� proceeds as described in the above outline. A detaileddescription appears in Figure 6.It follows from the security of protocol � that there exists an ideal-process adversary S� suchthat idealf;S�;Z� d= exec�;A�;Z� .The special structure of A� implies that S� has an additional property, described as follows.1919This property and the related discussion are very similar to the non-adaptive case. Nonetheless, we repeat thepresentation in full, with the appropriate modi�cations to the adaptive case. A reader that is familiar with the41
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The environment Z�Environment Z� proceeds as follows, given a value k for the security parameter and input �, andinteracting with parties P1; :::; Pn running protocol � and with an adversary A�. (Note that Z� usesthe code of Z and of A.)1. The input � is assumed to describe a global state at round l� � 1 of an execution of �� withadversary A and environment Z. Let ��0 denote the internal state of A, let �Z denote theinternal state of Z, and let ��i denote the internal history of the ith party, as described in �.If the input � is not in the right format then halt with no output.2. (This instruction is carried out throughout the execution of �.) Provide A� with the value ��0 .Furthermore, whenever A� corrupts party Pi, provide A� with ��i .3. (This instruction is carried out at the completion of the execution of �.) Let ui denote theoutput of party Pi, and let u0 denote the output of A�. Recall that Z� obtains these valueswhen they are generated.Upon obtaining u0:::un, run a simulated interaction between adversary A, environment Z,and (simulated) parties P 01; :::; P 0n running ��, starting from the round l� in which protocol �resumes. Adversary A is run from the internal state described in u0. Environment Z is runfrom state �Z . Party P 0i is run from a state � 0i that is obtained from �i and the output ui of�. (Note that �i and ui may not be su�cient for obtaining a complete internal state of P 0i atround l� , since the internal data of P 0i from the execution of � is not given. However, as long asP 0i remains uncorrupted the internal data from � is not needed for the simulated interaction.Figuratively, the internal data from � is zeroed out.) When the simulated A corrupts partyP 0i , proceed as follows:(a) Issue a `corrupt Pi' request to A�. The response, denoted di, is interpreted as theinternal history of Pi from the execution of �.(b) Obtain, by continuing the simulation ofZ, the value that Z hands A upon the corruptionof P 0i , and hand this value to A.(c) Combine di with the current (and incomplete) internal history of P 0i , obtain Pi's completeinternal history for ��, and hand this data to A.4. Halt when Z does, with an output value w that is structured as follows. First, w holds theinput �, followed by u0; :::; un, the local outputs of all the uncorrupted parties and the adver-sary at the completion of protocol �. Next, w holds the internal data of all the uncorruptedparties, obtained in Step 3a.Figure 6: Description of the environment Z�.Note that A� completely ignores the internal history of the a-priori corrupted parties. (These arethe parties that are already corrupted when protocol � is invoked.) Therefore, the distribution ofthe output of A�, as well as the global output of the system after running � with A�, remainsunchanged if we set the input value of the a-priori corrupted parties to 0, and their internal historyto null. Consequently, the distribution of the global output of the ideal process for evaluating fwith S� has the same property. We formalize this discussion as follows. Let ~x�j0 denote the vectorobtained from ~x� by replacing all the entries that correspond to the a-priori corrupted parties withnon-adaptive case can safely skip to the construction of adversary A�.42
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0. Then, we have:Claim 13 For any input vector ~x� for the parties and input z� for Z� we have:idealf;S�;Z�(k; ~x�; z�) d= idealf;S�;Z�(k; ~x�j0; z�)Proof: We have argued above that exec�;A�;Z�(k; ~x�; z�) d= exec�;A�;Z�(k; ~x�j0; z�): However,idealf;S�;Z�(k; ~x�; z�) d= exec�;A�;Z�(k; ~x�; z�), and idealf;S�;Z�(k; ~x�j0; z�) d=exec�;A�;Z�(k; ~x�j0; z�). The claim follows. 2Construction of A�. Adversary A� proceeds as described in the above outline. A detaileddescription appears in Figure 7.Analysis of A�. It is evident that the running time of A� is linear in the running time of A,plus the running time of S�, plus the running time of ��. Fix an input vector ~x, an environment Zwith input z, and some value of the security parameter. We show thatexec��;A;Z(k; ~x; z) d= execf�;A� ;Z(k; ~x; z) (12)where the symbol d= is denotes equality of distributions, not ensembles. This is shown in threesteps, as follows. (The steps are analogous to the non-adaptive case.)Let us �rst set some notation. (This notation is analogous to the non-adaptive case, see Section4.4.2). Recall that l� is the round where protocol � makes the ideal evaluation call, and protocol�� invokes �. Given vectors ~r� = r�Z; r�0 ; :::; r�n and ~r� = r�Z; r�0; :::; r�n (where ~r� is interpreted asrandom input for the execution of �� except for the execution of �, and ~r� is interpreted as randominput for the execution of �), let ~r�;� = r�;�0 ; :::; r�;�n denote the combination of ~r� and ~r� to a fullrandom-input vector for the execution of ��. (That is, party Pi uses r�i for the execution of � andr�i for the execution of �, the adversary uses r�0 during the execution of � and r�0 at other rounds,and the environment uses r�Z during the execution of � and r�Z at other rounds.) Similarly, givenr� = r�Z ; r�0 ; :::; r�n and ~rf , where ~r� is as above and ~rf is interpreted as a random vector for round l�in the f -hybrid model (that is, ~rf = rfZ; rf0 ; rf1 where rfZ; rf0 is the random inputs for the adversaryand the environment for this round and rf1 is the random input for the trusted party for f), let~r�;f denote the combination of ~r� and ~rf to a full random-input vector for the execution of � inthe f -hybrid model.Step I. Until round l� � 1 protocols � and �� behave the same. That is, �x some value ~r� forthe random-input of the system. We have:gs��;A;Z(l� � 1; k; ~x; z; ~r�) = gs�;A� ;Z(l� � 1; k; ~x; z; ~r�):Step II. We show that the global state in the hybrid model at the end of round l� is distributedidentically to the global state in the real-life model at the round where protocol � returns. This isdone in three sub-steps:1. We �rst show that the parameters set in the hybrid model for the ideal evaluation of f areidentical to the parameters set in the real-life model for the invocation of �. Let C be the setof a-priori corrupted parties, determined by ~r� . (That is, C is the set of corrupted parties at43
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Adversary A�Adversary A� , given value k for the security parameter, and interacting with an environmentmachineZ, with parties P1; :::; Pn running protocol �, and with a trusted party T for evaluating f , proceedsas follows. (Note that A� uses the code of Z and of A.)1. As in the non-adaptive case, invoke A on its own input, auxiliary input and random input,and follow the instructions of A up to round l� � 1. (Recall that so far, both in � and in ��the parties run �.) In addition, keep another piece of the random input `on the side'. Thispiece, denoted r�, is used below.2. At the onset of round l�, A expects to start interacting with parties running protocol � (assubroutine), whereas parties P1; :::; Pn call a trusted party for ideal evaluation of functionf . Thus, in order to continue the run of A, invoke simulator S� as follows. Let P 01; :::; P 0ndenote the set of simulated parties with which S� interacts, and let P 001 ; :::; P 00n denote the setof simulated parties with which A interacts.(a) The random input of S� is set to r�. The initial value that S� expects to receive fromits environment is set to the current internal state of A.(b) When S� asks to corrupt (in its ideal process) a party P 0i such that Pi is already cor-rupted, S� is given input values 0 for P 0i . (Recall that these are the a-priori corruptedparties, thus their inputs and the data from the environment do not a�ect the distribu-tion of the output of S�.)(c) When S� asks to corrupt a party P 0i that is not yet corrupted, corrupt Pi in the f-hybridmodel; let xfi be the value that Pi is about to hand T , the trusted party for f . Theninform S� that the input of P 0i is xfi . In addition, set ��i to contain the internal historyof Pi, and hand ��i to A� as the information from the environment.(d) When S� hands the inputs of the corrupted parties to its trusted party, and asks forthe values of f , invoke the trusted party, T , for f with the same input values for thecorrupted parties, and hand the value provided by the trusted party back to S�.(e) If S� corrupts P 0i after Step 2d then S� is given also the value that Pi received from thetrusted party.3. Let v denote the output of S�, before it starts the post-execution corruption phase. Recallthat v is an internal state of A at the round, l� , where the execution of � resumes. Continuethe current run of A from internal state v until the completion of protocol �, and follow A'sinstructions. When A corrupts a party P 00i at this stage, proceeds as follow.(a) Corrupt Pi in its f-hybrid model and obtain the internal history of P pertaining toprotocol �.(b) Play the role of the environment for S�, and request corruption of P 0i . Then obtainthe (simulated) internal history of P 0i pertaining to protocol �. (In the process S� maycorrupt P 0i in its ideal process. In this case hand S� the input for P 0i and the value fromthe environment as described in Step 2c.)(c) Combine the data from the previous two steps to obtain the internal history of P 00ipertaining to protocol ��, add the value received from A� 's environment, and hand allthis data to A.4. Once protocol � terminates, output whatever A outputs, and continue to simulate A as inStep 3 throughout the post-execution corruption phase.Figure 7: Description of adversary A� in the adaptive model.44
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the onset of round l�.) The set C is identical in the two executions. Let z�, an input valuefor environment Z�, consist of the global state z� = gs�� ;A;Z(l� � 1; k; ~x; z; ~r�).Let x�i denote the input value of uncorrupted party Pi for protocol �, as determined ings��;A;Z(l� � 1; k; ~x; z; ~r�). If Pi is corrupted then x�i = 0. Let ~x� = x�1; :::; x�n. Similarly, letxfi denote the value that party Pi hands the trusted party for f , as determined in gs�;A� ;Z(l��1; k; ~x; z; ~r�), and let ~xf = xf1 ; :::; xfn. It follows that ~x� = ~xf j0.2. Next we assert that the global output of the execution of �, that is implicit in the run of ��with adversary A, is distributed identically to the global output of the ideal evaluation of fthat is implicit in round l� of the run of � in the hybrid model. That is, from the validity ofS�, from Step II.1, and from Claim 13 we have:exec�;A�;Z�(k; ~x�; z�) d= idealf;S�;Z�(k; ~x�; z�) = idealf;S�;Z�(k; ~xf j0; z�) d= idealf;S�;Z�(k; ~xf ; z�) (13)(Note that Equation (13) applies also to the interaction between the environment Z� and therespective adversaries, after � is completed. This fact plays a central role in Step III.)3. We show that the global state in the hybrid model at the at the end of round l� is distributedidentically to the global state in the real-life model when protocol � returns. That is, Let l�denote the round where the call to protocol � returns (within protocol ��). Then, it followsfrom the de�nition of �� and the constructions of A�, Z�, and A� that:(a) Let ~r� be a random-input vector for protocol �. Let ĝs�� ;A;Z(l; k; ~x; z; ~r�;�) be the vectorgs��;A;Z(l; k; ~x; z; ~r�;�) after removing, for each uncorrupted party, all the internal statespertaining to protocol � except for the output from �. Then, ĝs��;A;Z(l�; k; ~x; z; ~r�;�)can be obtained from gs�� ;A;Z(l� � 1; k; ~x; z; ~r�) and exec�;A�;Z�(k; ~x�; z�; ~r�) via a de-terministic, simple process, denoted C. (Process C essentially updates the internal his-tories of the parties and the internal state of the adversary. More precisely, recall thatw def= exec�;A�;Z�(k; ~x�; z�; ~r�) is the output of Z� from that execution. Process C �rstmodi�es the internal history of each uncorrupted party Pi by adding the appropriateportion of w to gs�� ;A;Z(l� � 1; k; ~x; z; ~r�) in the appropriate place. Next C outputs theinternal state of A as it appears in A�'s output in w, together with the modi�ed internalhistories of the uncorrupted parties.)(b) Let ~rf be a random input vector for the ideal evaluation process of f . Then, gs�;A�;Z(l�; k; ~x; z; ~r�;f)is obtained from gs�;A� ;Z(l� � 1; k; ~x; z; ~r�) and idealf;S�;Z�(k; ~xf ; zf ; ~rf) via the sameprocess, C, as in the real-life execution.It follows that for any value of ~r�, and for vectors ~r� and ~rf that are uniformly chosen intheir respective domains, we haveĝs��;A;Z(l; k; ~x; z; ~r�;�) d= gs�;A� ;Z(l�; k; ~x; z; ~r�;f):Step III. We assert Equation (12). We have:1. For each round l > l� the vector ĝs��;A;Z(l; k; ~x; z; ~r�;�) can be obtained from ĝs��;A;Z(l �1; k; ~x; z; ~r�) and w def= exec�;A�;Z�(k; ~x�; z�; ~r�) via the following process, C 0: Continue theexecution for one round from the global state described in ĝs�� ;A;Z(l � 1; k; ~x; z; ~r�). If nonew corruption occurs in this round then ĝs��;A;Z(l; k; ~x; z; ~r�;�) is obtained. In case that A45
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corrupts a new party, Pi, take the internal history of Pi pertaining to protocol � from w. (Itis guaranteed that Pi is corrupted in w.)A's interaction with the environment Z at the completion of the execution of �� is deter-mined by ĝs��;A;Z(l�; k; ~x; z; ~r�) and w via a similar process. In particular, the global outputexec�� ;A;Z(k; ~x; z; ~r�;�) is uniquely determined.2. For each round l > l� vector gs�;A� ;Z(l; k; ~x; z; ~r�;f) is determined from gs�;A�;Z�(l�1; k; ~x; z; ~r�;f)and idealf;S�;Z�(k; ~x�; z�; ~r�) via the same process, C 0, as in the the real-life execution. Theinteraction with environment Z at the completion of the execution of � is also determined inthe same way as there. In particular, the global output execf�;A� ;Z(k; ~x; z; ~r�;f) is determinedin the same way as there.It follows that for any value of ~r�, and for vectors ~r� and ~rf that are uniformly chosen in theirrespective domains, we haveexec��;A;Z(k; ~x; z; ~r�;�) d= execf�;A�;Z(k; ~x; z; ~r�;f):Equation (12) follows by letting ~r� be randomly chosen in its domain.This completes the proof for the case of a single ideal evaluation call. The case of multiple idealevaluation calls is treated in the same way as in the non-adaptive case. We omit further details.6 The computational settingThis section de�nes secure protocols and proves the composition theorem in the computationalsetting, where the adversary sees all the communication among the parties and is restricted toprobabilistic polynomial time. We concentrate on the case of adaptive adversaries. The simplercase of non-adaptive adversaries can be easily inferred.The treatment is quite similar to that of the secure channels setting (Section 5). Therefore, thissection is not self-contained; we assume familiarity with Section 5 and only highlight the di�erences.Section 6.1 contains de�nitions of secure protocols. All the remarks from Sections 4.2 and 5.2 arerelevant here. Additional remarks speci�c to the computational setting appear in Section 6.2.Section 6.3 presents and proves the composition theorem.6.1 De�nition of security: The computational caseWe de�ne adaptively secure multi-party computation in the computational setting. Executing aprotocol � in the real-life scenario, as well as the notation exec�;A;Z , are the same as in theadaptive secure channels setting, with the following exceptions:1. The real-life adversary, A, and the environment Z are probabilistic polynomial time (ppt).Note that this is a weakening of the security o�ered by this model, relative to that of Section 5.(The running time of the adversary, as well as that of all other entities involved, is measuredas a function of the security parameter, k. To accommodate the convention that the runningtime is measured against the length of the input we envision that the string 1k is given as anadditional input.)2. A sees all the communication between the uncorrupted parties. Consequently, when a partygets corrupted the new data learned by the adversary is only the party's input and random46
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input. Note that this is a strengthening of the security o�ered by this model, relative to thatof Section 5.20The ideal process is the same as in the secure channels setting. (Since the real-life adversary isalways ppt, so is the ideal-process adversary.) The notation idealf;S;Z remains unchanged.We de�ne emulation of the ideal process by a real-life computation in the same way, with theexception that here we only require that the global outputs are computationally indistinguishable(as de�ned in Section 3):De�nition 14 (adaptive security in the computational setting) Let f be an n-party func-tion, and let � be a protocol for n parties. We say that � adaptively t-securely evaluates f in thecomputational setting, if for any ppt t-limited real-life adversary A and any ppt environment Zthere exists a ppt ideal-process adversary S, such thatidealf;S;Z c� exec�;A;Z (14)If A and S are passive then � adaptively t-privately evaluates f in the computational setting.6.2 DiscussionRemark 1: On the complexity of Z. We stress that De�nition 14 quanti�es only over allenvironments Z that are ppt. This is so since in the computational setting we assume that allinvolved entities (including the environment, represented by Z) are ppt. Indeed, a de�nition thatallows Z more computational power will be hard to satisfy, since an over-powerful Z may be ableto break cryptographic primitives used by the parties, and thus distinguish between the real-lifecomputation and the ideal process. (Recall that our model allows Z access to the communicationamong the parties, via A's view.)Remark 2: On \absolute" vs. \computational" correctness. De�nition 14 only requiresthe two sides of (14) to be computationally indistinguishable. (That is, it is required that for anyppt distinguishing algorithm D, and for any values of k; ~x; z, algorithm D distinguishes between(k; ~x; z; idealf;S;Z(k; ~x; z)) and (k; ~x; z; exec�;A;Z(k; ~x; z)) only with probability that is negligible inthe security parameter k.) In particular, this means that the ensemble describing the outputs of theuncorrupted parties in the real-life model is only required to be computationally indistinguishablefrom the ensemble describing these outputs in the ideal process.Let us �rst discuss the consequences of this requirement in the case of passive adversaries.The case of active adversaries is somewhat more involved and is addressed below. In the case ofpassive adversaries De�nition 14 imposes di�erent requirements depending on whether the evaluatedfunction is deterministic or probabilistic. When f is deterministic the output of each uncorruptedparty in a protocol that securely evaluates f will be the (uniquely determined) value of f onthe corresponding set of inputs. In this case, we say that the de�nition guarantees \absolutecorrectness". When f is probabilistic, a protocol that securely evaluates f only guarantees that thedistribution of the outputs of the uncorrupted parties is computationally indistinguishable from thespeci�ed distribution. It is not guaranteed that the distribution of the outputs of the uncorrupted20We assume that the links are ideally authenticated, namely the adversary cannot alter the communication. Thisassumption is used in many works on cryptographic protocols, and makes the analysis of protocols much easier.Removing this assumption can be done in a \modular" way that concentrates on the task of message authentication.See, for instance, [bck98]. 47
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parties will be equal to the speci�ed distribution. In this case, we say that the de�nition guarantees\computational correctness".Let us demonstrate this point via an example. Assume that the function to be evaluatedis f1(x1; :::; xn) = g(�ni=1xi) where g is some pseudorandom number generator, and � denotesbitwise exclusive or. In this case, only protocols where the uncorrupted parties output the value ofg(�ni=1xi) on any input sequence x1; :::; xn will be considered secure. In contrast, assume that theevaluated function is f2() = r, where r is a random value of the same length as g(�) above. (Thatis, f2 is a probabilistic function and r is chosen using the \intrinsic randomness" of f2.) In thiscase, any protocol in which the parties output a pseudorandom value of the appropriate length issecure.In the case of active adversaries the distinction between the cases where the de�nition guar-antees \absolute correctness" and the cases where the de�nition guarantees only \computationalcorrectness" is more drastic. The reason is that here the corrupted parties (both in the real-lifeand in the ideal model) may contribute to the computation values chosen irrespectively of the giveninput values; in particular the contributed values can be chosen randomly according to some dis-tribution. Consequently, the de�nition guarantees \absolute correctness" only for functions wherethe output value is uniquely determined by the inputs of the uncorrupted parties alone.Let us demonstrate this point via another example. Consider the function f1 described above.This function is deterministic; however, the value x (and, consequently, the output of the parties)is not well-de�ned given the inputs of the uncorrupted parties. In particular, when the corruptedparties contribute randomly chosen values, the function value is in e�ect g(r) where r is randomand independent from the inputs of the parties. Therefore it is possible to construct protocolsthat securely evaluate f1 according to De�nition 14, but where the parties output a random value,independently of the inputs of the parties.In contrast, consider the function f3(x1; :::; xn) = g(x1) if x1 = x2 = ::: = xn, and f3(x1; :::; xn) =?otherwise. Here the output of the parties is uniquely de�ned (up to an error value) given the inputsof the uncorrupted parties. Consequently, in a protocol that securely evaluates f3 the uncorruptedparties output the (uniquely de�ned) output value on each input.The above discussion brings us to the more general issue of how to formally cast an \intuitivetask" as a function to be evaluated. We have seen that seemingly similar formalizations result invery di�erent security requirements on protocols. Thus, care must be taken to formalize a giventask in a way that correctly captures the desired security requirements.6.3 Modular composition: The computational caseWe state and prove the composition theorem and its corollary for the case of adaptive adversariesin the computational setting.The computational hybrid model. The (computational, adaptive) (f1; :::; fm)-hybrid modelis de�ned identically to the secure channels, adaptive case (Section 5.3), with the exception that westart from the computational real-life model, rather than from the secure-channels real-life model.The notation execf1;:::;fm�;A;Z remains unchanged (here it applies to the computational setting). The`mechanics' of replacing an ideal-evaluation call of protocol � with a call to a subroutine real-lifeprotocol, �, are also identical to the case of secure channels.Theorem 15 (Adaptive computational modular composition: General statement) Lett < n, and let f1; :::; fm be n-party functions. Let � be an n-party protocol in the computational48
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(f1; :::; fm)-hybrid model where no more than one ideal evaluation call is made at each round, andlet �1; :::; �m be n-party protocols where �i adaptively t-securely (resp., t-privately) evaluates fi inthe computational setting. Then, for any ppt adaptive t-limited active (resp., passive) real-lifeadversary A and for ppt any environment machine Z there exists a ppt adaptive active (resp.,passive) adversary S in the (f1; :::; fm)-hybrid model such thatexecf1;:::;fm�;S;Z c� exec��1;:::;�m ;A;Z : (15)Protocols for securely evaluating a function g in the computational (f1; :::; fm)-hybrid modelare de�ned in the usual way:De�nition 16 Let f1; :::; fm; g be n-party functions and let � be a protocol for n parties in thecomputational (f1; :::; fm)-hybrid model. We say that � adaptively t-securely evaluates g in the com-putational (f1; :::; fm)-hybrid model if for any ppt adaptive t-limited adversary A (in the (f1; :::; fm)-hybrid model) and every ppt environment Z, there exists a ppt adaptive ideal-process adversary Ssuch that idealg;S;Z c� execf1;:::;fm�;A;Z : (16)If A and S are passive adversaries then we say that � adaptively t-privately evaluates g in thecomputational (f1; :::; fm)-hybrid model.Corollary 17 (Adaptive computational modular composition: Secure function evaluation)Let t < n, and let f1; :::; fm; g be n-party functions. Let � be an n-party protocol that adaptivelyt-securely (resp., t-privately) evaluates g in the computational (f1; :::; fm)-hybrid model, and as-sume that no more than one ideal evaluation call is made at each round. Let �1; :::; �m be n-partyprotocols that adaptively t-securely (resp., t-privately) evaluate f1; :::; fm, respectively, in the com-putational setting. Then protocol ��1;:::;�m adaptively t-securely (resp., t-privately) evaluates g inthe computational setting.The proof of Corollary 17 is identical to that of Corollary 12.Proof of Theorem 15: Again, we only prove the theorem for the case of active adversaries. Thesimpler case of passive adversaries can be easily inferred. As in the case of adaptive security withsecure channels, we �rst restrict the presentation to active adversaries and to protocols where thetrusted party is called only once. The case of multiple ideal evaluation calls is treated at the endof the proof.The constructions of A�, Z�, and A� are identical to those of Section 5.4 (the adaptive, securechannels case), with the obvious exception that the simulated adversary A is always being givenalso the messages sent among the uncorrupted parties. The complexities of A�, Z� are linear inthe complexity of A, and the complexity of A� is linear in the complexities of A and S�. We show:exec�� ;A;Z c� execf�;A� ;Z : (17)Essentially, the only di�erence from the proof in secure channels case is in Step II.2, namely thatexec�;A�;Z� and idealf;S�;Z� are only guaranteed to be computationally indistinguishable; but thissu�ces to show (17).More precisely, given a distinguisher D between exec�� ;A;Z and execf�;A�;Z , construct a distin-guisher D0 between exec�;A�;Z� and idealf;S�;Z� . On input k and a value w (which is the outputof Z�), distinguisher D0 orchestrates an execution of �� with adversary A and corruptor Z , on theinputs and random inputs appearing in w, and using the data in w for the parties' outputs from49
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�. Once the global output w0 from this execution is generated, D0 runs D on (k; w0) and outputswhatever D outputs.Using the same arguments as in the secure channels case, it is seen that if w has the distributionof exec�;A�;Z�(k; ~x; z) for some ~x; z then w0 has the distribution of exec��;A;Z(k; ~x; z). Similarly,if w has the distribution of idealf;S�;Z�(k; ~x; z) then w0 has the distribution of execf�;A� ;Z(k; ~x; z).Consequently, if D distinguishes between exec��;A;Z(k; ~x; z) and execf�;A� ;Z(k; ~x; z) with probabil-ity that is not negligible, then D distinguishes between exec�;A�;Z�(k; ~x; z) and idealf;S�;Z�(k; ~x; z)with probability that is not negligible.On multiple ideal evaluation calls. As in the secure channels model, the case of multiple idealevaluation calls is a straightforward generalization of the case of a single call. The construction ofthe generalized adversary is the same as in the secure channels model; however, the analysis usesa \hybrids argument". We sketch the main points of di�erence from the single call, computationalcase. (These points are analogous to the ones discussed in the non-adaptive, secure channels case,see Section 4.4.2.)1. An adversary A�i is constructed for each protocol �i. All the A�i 's are identical to adversaryA� described above, with the exception that protocol � is replaced by �i. If �i = �j for somei; j then A�i = A�j .2. Similarly, an environment machine Z�i is constructed for each protocol �i. All the Z�i 's areidentical to Z� described above, with the exception that protocol � is replaced by �i. (If�i = �j for some i; j then Z�i = Z�j .)3. Construct an adversary ~A� that is identical to A� described above, with the exception thatat each round where � instructs the parties to ideally evaluate fi, adversary ~A� runs a copyof S�i in the same way that A� runs S�. The initial value given to S�i is set to the currentinternal state of the simulated A within A� . (Recall that there may be many invocations ofthe same simulator S�i , where each invocation corresponds to a di�erent ideal evaluation callto fi. These invocations will have di�erent initial values.)4. As in the case of a single ideal evaluation call, it is evident that the running time of ~A� islinear in the running time of A, plus the sum of the running times of all the invocations ofS�1 ; :::;S�m, plus the running time of ��1;:::;�m. We sketch a proof that exec��1 ;:::;�m ;A;Z c�execf1;:::;fm�; ~A� ;Z . Let c denote the total number of ideal evaluation calls made by � in thef1; :::; fm-hybrid model. First de�ne c + 1 hybrid protocols �0; :::; �c, all in the f1; :::; fm-hybrid model, where �j follows � until the end of the jth ideal evaluation call, and follows��1;:::;�m for the rest of the interaction. Similarly, de�ne c+1 adversaries A0; :::;Ac, where Ajis the adversary that follows the instructions of A� until the end of the jth ideal evaluationcall, and follows the instructions of A for the rest of the interaction. Let Hj denote theensemble execf1;:::;fm�j; ~Aj ;Z .It can be seen that H0 = exec��1 ;:::;�m ;A;Z and Hc = execf1;:::;fm�; ~A�;Z . Furthermore, using asimilar argument to the one used for the single call case, it can be seen that if there exists adistinguisher between Hj and Hj+1 for some j > 0 then there exists a distinguisher betweenexec�i;A�i ;Z�i and idealfi;S�;Z�i , where fi is the function evaluated in the jth call. (Thedistinguishing probability is reduced by a factor of c.) 250
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Non-adaptive security in the computational setting. A de�nition of non-adaptive secu-rity in the computational setting can be easily derived from De�nitions 4 and 14. Furthermore,composition theorems similar to the ones here hold in that case as well.We remark, however, that in the computational non-adaptive case the distinguisher D0 describedabove does not work. This is so since there, in contrast to the adaptive case, the global output ofthe execution of protocol � does not include su�cient information for orchestrating an execution of�� with A. Consequently, D0 will receive this information, namely the inputs and random inputsof the parties for protocol �, in its auxiliary input (see De�nition 3).21 See more details on thenon-adaptive computational case in [g98].AcknowledgmentsComing up with the de�nitions presented here would not have been even remotely possible withoutthe devoted help of Oded Goldreich over a period of several years. Oded has contributed immenselyto their shaping, as well as to the modular composition theorems.Let me also thank the many people I interacted with for very helpful discussions and inputsconcerning the de�nitions and the modular composition theorems. Among these are Rosario Gen-naro, Sha� Goldwasser, Shai Halevi, Hugo Krawczyk, Eyal Kushilevitz, Silvio Micali, Moni Naor,Ra� Ostrovsky, Charlie Racko� and Phil Rogaway.Finally let me thank the anonymous referees for their careful and thorough reading of themanuscript and for their very helpful remarks and suggestions.References[b91] D. Beaver, \Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating aFaulty Minority", J. Cryptology, Springer-Verlag, (1991) 4: 75-122.[b91a] D. Beaver, \Foundations of Secure Interactive Computing", CRYPTO '91, Lecture Notesin Computer Science (LNCS) 576, Springer-Verlag, 1991.[bg89] D. Beaver and S. Goldwasser, \Multi-party computation with faulty majority", 30th Symp.on Foundations of Computer Science (FOCS), IEEE, 1989, pp. 468-473.[bh92] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adver-saries. In Advances in Cryptology | Eurocrypt '92, LNCS No. 658, Springer-Verlag, 1992,pages 307{323.[bck98] M. Bellare, R. Canetti and H. Krawczyk, \A modular approach to the design and analysisof authentication and key-exchange protocols", 30th Symposium on Theory of Computing(STOC), ACM, 1998.[bcg93] M. Ben-Or, R. Canetti and O. Goldreich, \Asynchronous Secure Computations", 25thSymposium on Theory of Computing (STOC), ACM, 1993, pp. 52-61.21Indeed, in the case of adaptive adversaries a weaker version of De�nition 3 that does not provide the distinguisherwith auxiliary input would be su�cient for the composition theorem to hold. We formulate the stronger notion inorder to be compatible with the non-adaptive computational case.51
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restricted to one pass simulation (i.e., it cannot rewind the adversary), and receives external infor-mation regarding the inputs of the corrupted parties and their outputs. This external information isrelated to the values of the input and output awareness functions applied to the simulated conversa-tion. Furthermore, it is received in a timely fashion: the simulator receives the designated outputsof the corrupted parties (i.e., the appropriate function values) only at a certain pre-speci�ed round(this is the round where the inputs become determined by the input-awareness function applied tothe comunication); in addition, only when a party is corrupted by the adversary can the simulatorreceive the input value of that party.This de�nition of security seems to imply ours (in the settings where it applies). In fact, it seemsconsiderably more restrictive. Let us highlight three aspects of this extra restrictiveness. First, therequirement that the input and output awareness functions be computable from the communicationalone implies that protocols where parts of the computation are done locally without interaction(e.g., the trivial protocol where no communication takes place and each party computes its outputlocally) are considered insecure. Second, limiting the simulator to one pass black-box simulationexcludes a proof technique that seems essential for proving security of a wide range of protocols (e.g.,zero-knowledge proofs [gmr89, gmw91]). Third, requiring that the simulator receives the outputsof the corrupted parties only after the inputs are determined by the communication excludes anadditional set of protocols.22The de�nition of Goldwasser and Levin. Goldwasser and Levin take a di�erent approach.First they formalize the `inevitable advantages' of the adversary in the ideal process (we brieysketch these `inevitable advantages' below). Next they say that a protocol is robust if for anyadversary there exists an `equivalent' adversary that is limited to these `inevitable privileges', andthat has the same e�ect on the computation. Their notion of robustness of protocols has theadvantage that it is independent of the speci�c function to be evaluated (except for some technicalsubtleties ignored here).The `inevitable privileges' of the adversary, extracted from the ideal process, can be sketched asfollows. First, the adversary may choose to corrupt parties (either adaptively or non-adaptively).Next, if the adversary is active then the inputs of the corrupted parties may be modi�ed. (However,this is done without knowledge of the inputs of the uncorrupted parties). Next, the adversary maylearn the speci�ed outputs of the corrupted parties. This may inevitably reveal some informationon the inputs of the uncorrupted parties. Furthermore, if the adversary is adaptive then it cancorrupt parties, after the computation is completed, based on the output of the computation.23The di�erence between the [gl90] approach and ours may be viewed as follows. Instead ofdirectly comparing (as we do) executions of the protocol in real-life to an ideal process where aspeci�c function is evaluated, they �rst compare real-life executions of the protocol to executions ofthe same protocol in an idealized model where the adversary is limited as described above. So farone does not need to specify what functionality the protocol is ful�lling. In a second step (whichis implicit in [gl90]), one claims that executing the protocol in the idealized model is equivalentto an ideal evaluation process of a speci�c function.22For instance, let the \bit transmission" function be such that the output of party R (the receiver) equals theinput of party S (the sender). Consider the protocol where S simply sends its input to R over the private channel.This protocol is rejected by the de�nition of [mr91] since the simulator is required to provide a corrupted receiverwith the value of the transmitted bit before this value becomes known. (This protocol securely evaluates the bittransmission function according to the de�nition here.)23If a majority of the parties are corrupted then, in addition to the privileges described above, the adversarycannot be prevented from \quitting early", i.e. disrupting the computation at any time. However, this is donewithout knowing the output with more certainty than the uncorrupted parties.55
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The de�nition of Beaver. Beaver's de�nition [b91, b91a] takes a similar approach to the onehere. We sketch this approach using the terminology of [b91]. First a general notion of comparingsecurity of protocols is formulated, as follows. Consider two protocols � and � for evaluating thesame function. Protocol � is at least as secure as protocol � if there exists an interface that turnsany adversary A attacking � into an adversary A0 attacking �, such that for any inputs the globaloutput of the two computations are identically distributed. The global output is de�ned similarlyto here. The interaction between the interface and A is apparently black-box, and rewindingthe adversary is not allowed. (The de�nition does not fully specify the details of the interactionbetween the interface and A.) A protocol for evaluating a function is secure if it is at least assecure as the trivial protocol for evaluating the function in an ideal model similar to the onehere. To allow for secure sequential composition, the de�nition allows the adversary to receiveadditional auxiliary information upon corrupting a party. In addition it requires the protocol tobe post-protocol corruptible. That is, the adversary should be able to respond to \any sequence ofpost-execution corruption requests" with the internal data of the relevant parties.Disallowing rewinding is a considerable limitation, especially in the computational setting. (SeeRemark 3 in Section 4.2). An additional weakness of this de�nition is that, unlike here, A0 is notrequired to be as e�cient as A. (See Remark 1 in Section 4.2). Compared with our notion ofan environment machine, the requirement of post-protocol corruptibility has two main drawbacks.First, it does not take into account the fact that the post-execution corruption requests can beadaptive and depend on the execution of the protocol itself and on the data learned from previouscorruptions (rather than being �xed in advance). Second, this formalization does not generalize tothe computational setting, where the corruption requests must be generated by a ppt machine (seeRemark 1 in Section 6.2).The de�nition of Canetti et. al. The de�nitions of [c95, cfgn96] di�ers from the one herein the following aspects. First, as in [b91], these de�nitions require the ideal-process adversaryto operate via black-box simulation with no rewinds. Next, they do not incorporate auxiliaryinput in the de�nition, and do not include an environment machine. Finally, these de�nitionshave additional structure whose purpose is to formalize the amount of internal deviation from theprotocol allowed to uncorrupted parties. That is, �rst they de�ne what it means for a protocol �0 tobe a semi-honest protocol for a known protocol �. (Essentially, �0 allows even uncorrupted partiesto internally deviate from �, as long as this deviation is undetectable by the other parties.) Nextthey say that � is secure only if any semi-honest protocol for � is secure.
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